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MICROPROCESSOR SYSTEM ARCHITECTURE  
 

System Description (AIR Principle)  
 
 

           System  
       Description  
           Levels  
 
 
 
 

 I Architecture [A] Level  
 
                             WHAT?  
 
System extraordinariness, singularity (some quality of a thing by which it is distinguished  

                                                      from all, or most, others).  
 

Specific software/hardware interface, which includes:  
 
   Instruction set;  
   Memory management and protection;  
   Interrupts;  

Floating-point standard, etc.  
 

   Architecture development life-cycle  
 

Development
Speed 

V

0
A B C

A1 A2 

Time 
t

 
A1, A2 – different architectures of a system  

 

   SYSTEM  

     (MPS)  
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Forces on the microprocessor system (computer) architecture are:  
 

1. Applications;  
2. Technology;  
3. Operating systems;  
4. Programming languages;  
5. History.  

 

 
 
 
 

II Implementation [I] Level  
 
                            HOW?  
 
 Logical structure, organization or microarchitecture.  
 

   Number and location functions;  
   Pipeline configuration;  
   I/O system organization;  
   Location and configuration of caches, etc.  
 

      ►  Microprocessor Families  
 
 
 

 III Realization [R] Level  
 

                              WHICH and WHERE?  
 
 

Architecture versus Microarchitecture  
 
Architecture is used to describe an abstract requirement specification.  

It refers to the instruction set, registers, and memory data-resident structures that are 

public to a programmer.  
 
Microarchitecture is used to describe the specific composition of elements that  
realizes architecture in a specific design.  

It refers to an implementation of (micro)processor architecture in silicon.  

 

Architecture is the iterative searching of the possible designs at all 
levels of microprocessor system.  
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Intel 

EPIC
Explicitly
Parallel 

Instruction 
Computing 

IA-32 

IXA 
Internet 

Exchange 
Architecture 

P5 P6 NetBurst Mobile 

Pentium
Pentium Pro 
Pentium II 
Pentium III 

Pentium 4 
Pentium D 

Xeon 
Pentium M 

Architecture 

Microarchitecture

Instruction set definition 
and compatibility

Hardware implementation 
maintaining instruction set 

compatibility with high-level architecture 

Implementation of microarchitecture
 in microprocessor 

Realization 

 
 
 
AIR principle uses only three system description levels, but for more precise description there is 
used more description levels, as for:  
 
1. Processor-memory level, at which architecture of a microprocessor system is described.  
2. Instruction set level, at which the function of each instruction is described. 
3. Register transfer level (RTL), at which the system’s hardware structure is described in 

details.  
4. Logic gate level, at which the hardware components are described as standard logic elements 

and flip-flops.  
5. Circuit level, at which the hardware components internal structure is opened and they 

described by active (transistors) and passive elements.  
6. Integrated circuit masks level, at which the silicon structures and their layout, that used to 

implements the system components, are shown.  
 
 

Moving from the first description level to the last, we can see how the behavior of the 

microprocessor system is transformed into the real hardware and software structure.  
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Architecture Taxonomies  
Classical Architectures  

 
 

Princeton or von Neumann Architecture  

 
 

Characteristic features:  
 

1. Integral processing unit;  
2. United data and instructions memory;  
3. United bus between CPU and memory;  
4. Centralized control;  
5. Low-level programming languages;  
6. Memory linear addressing.  

 
 
 

Harvard Architecture  
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Characteristic features:  
 

1. Instruction and data memories occupy different address spaces;  
2. Instruction and data memories have separate buses to the CPU (A);  
3. Instruction and data memories can be implemented in different ways.  

 
 

Modified Harvard Architecture and Flynn`s Classification  
 
A pure Harvard architecture has the disadvantage that mechanisms must be provided to 
separately load the program to be executed into instruction memory and data to data memory.  
Modern Harvard architecture computers often use a read-only technology for the instruction 
memory and read-write technology for the data memory. This allows the computer to begin 
execution of a pre-loaded program as soon as power is applied.  
The Modified Harvard Architecture is relegated to niche applications – microcontrollers and 
digital signal processors.  
 

 
 

Multi-microprocessor system - a system that use more than one microprocessor to perform  
                                                     a desired application.  

Multiprocessor systems were designed for at least one of two reasons:  
1. Speed-up program;  
2. Fault tolerance.  

 

The classification of computer architectures based on notions of instruction and data streams or 
Michael Flynn`s (1972)) classification. Flynn`s classification stresses the architectural relationship 
at the memory-processor level. Other architectural levels are overlooked.  
 

SISD

MIMD

Single 
Data 

Stream MISD

SIMD

Single 
Instruction 

Stream 

Multiple 
Instruction  

Streams 

Multiple 
Data 

Streams 

SIMD => Data Level Parallelism 

    MIMD => Thread Level Parallelism

 
Flynn-Johnson Classification  

 

The principal advantage of the Harvard architecture – 
simultaneous access to instruction and data memories  

has been nullified by modern cache systems.  
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Instruction Set Architecture  
 
 
In the past, the term computer architecture referred only to instruction set design.  
The term instruction set architecture (ISA) refers to the actual programmer-visible instruction set.  

ISA enables different implementations of the same architecture but it may prevent using new 
innovations.  

 
 

Classification instruction set architectures (by J. L. Hennessy & D. A. Patterson)  
 

1. Register-memory architecture  
2. Register-register or load-store architecture  
3. Accumulator architecture  
4. Stack architecture  

           (5).    Memory-memory architecture  
 
 
 

 
 
 

from
 memory

from
 memory

Stack top

ALU ALU

ALU ALU

Stack architecture Accumulator architecture

Register-memory architecture Register-register/load architecture

RGF RGF

RGF
RGF
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Architectures Taxonomy by Milutinovic  
(1989)  

 
1. Control -driven (control-flow) architectures  
 

The instruction sequence guides the processing activity.  
a. Reduced instruction set computers (RISC);  
b. Complex instruction set computers (CISC);  
c. High-level language architectures (HLL).  

 

2. Data-driven (data-flow) architectures  
 

The processing activity is controlled by the readiness of data (experimental).  
 

3. Demand-driven (reduction) architectures  
 

An instruction is enabled for execution when its results are required as operands  
for another instruction that has been already enabled for execution (experimental).  

 

Architecture Standardization and Open-system Concept  
 
An open-system is a collection interfaces, protocols, and data formats that are based on the 
commonly available, universally accepted standards providing software portability, system 
interaction, and scalability.  
 

o Portability is a property of a source code program to be executed on different hardware 
platforms under different operating systems.  

o System interaction is the ability of systems to exchange information automatically, 
recognizing the format and semantics of data.  

o Scalability is a property of a program to be executed using different resources with the 
efficiency rate being proportional to the resources available.  

 
 

Summary  

Comparison Different ISA Structures  
 

     Number of  
memory accesses 
 

 

  Maximum number  
of operands allowed  

 
 

     Architecture  

 
 

      Examples  

 

              0  
 

 

               3  
 

   register-register  
 

Alpha, Power PC 

 

              1  
 

 

               2  
 

   register-memory  
 

IBM 360/370, 
Intel 80x86 

 

              2  
 

 

               2  
 

 memory-memory  
 

VAX 

 

              3  
 

 

               3  
 

 memory-memory  
 

VAX 
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Advantages and Disadvantages Different ISA Structures  
 

 

Architecture 
 

 

Advantages 
 

 

Disadvantages 
 

 

 
 
 register-register  
           (0,3)*  
 

 

1. Simple, fixed-length 
instruction decoding.  
2. Simple code generation 
model.  
3. Instructions take similar 
number of clocks to execute.  
 

 

1. Higher instruction count than 
architectures with memory 
references in instructions.  
2. More instructions, lower 
instruction density - larger 
programs.  
 

 

 
 
 
 register-memory  
            (1,2)  
 

 
 

1. Data can be accessed 
without a separate load 
instruction first.  
2. Instruction format tends to 
be easy to encode and offers 
good density.  
 

 

1. Operands are not equivalent 
since a source operand in a 
binary operation is destroyed.  
2. Encoding a register number 
and a memory address in each 
instruction may restrict the 
number of registers.  
3. Clock per instruction varies 
by operand location.  
 

 

 
 
 memory-memory  
    (2,2) or (3,3)  
 

 
 
 

Most compact, and doesn't 
waste registers for 
temporaries.  
 

 

1. Large variation in instruction 
size.  
2. Large variation in work per 
instruction.  
3. Memory accesses create 
memory bottleneck.  
4. Not used.  
 

• In the notation (m,n) means m memory operands and n total operands.  
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Operating System Management Functions  
 
Operating system (OS) controls the execution of programs on a processor and manages the 
processor’s resources.  
 

Programmer’s View of a Computer System  

The main functions of OS are process (task) scheduling //plaanimine// and memory management 
//mäluhaldus//.  
The OS determines which process should run at any given time.  
 

� The main types of process scheduling are:  
 

a. Long-term scheduling;  
b. Medium-term scheduling;  
c. Short-term scheduling;  
d. I/O scheduling.  
 

During the lifetime of a process, its state will change a number time:  
 

New > Ready > Running > Waiting > Halted.  
 
� The main tasks in memory management are swapping //saalimine// and partitioning 

//sektsioneerimine// (fixed-size partitions or variable-size partitions).  

Application programs

High-level languages 

Assembly language 

Machine language 

Microprogram control

Hardware 

Machine-independent 

Machine-specific 

HLL 

LLL
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Generic Architecture of Operating System  
 
The kernel is the basic set of computing functions needed for an operating system. The kernel 
contains the interrupt handler, the task manager, and the inter-process communication manager.  
It may also contain the virtual memory manager and the network subsystem manager.  
The services provided by an operating system can be organized in categories:  
 

1. Task control,  
2. File manipulation,  
3. Device control,  
4. Information maintenance.  

 

 
Architecture of UNIX  

 
 
 

Process and Thread  
 
The basic unit software that the OS deals with is either a process (heavyweight process) or  
a thread (lightweight process) //lõim, haru//, depending on the OS.  
A process is software that performs some action and can be controlled (by user, by other 
application, by the OS).  
 

A process may start threads or other processes, but thread cannot start a process.  
 
The information needed to keep track of a process when switching is kept in a data package is 
called a process control block (PCB). The PCB contains information about:  
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1. An ID number that identifies the process;  
2. The priority of the process;  
3. Pointers to the locations in the program and its data where processing last  

occurred;  
4. Pointers to the upper and lower bounds of memory required for the process;  
5. States of flags and switches;  
6. A list of files opened by the process;  
7. Registers content;  
8. The status of all I/O devices needed by the process.  

 
In many OSs processes can subdivide themselves into more easily managed subunits called 
threads.  
 

A thread is a portion of a process that can be scheduled and executed independently.  
 

The thread can deal with all the CPU-intensive work of a normal process, but generally does not 
deal with the various types of I/O operations and does not establish requiring the extensive process 
control block of a regular process.  
 

Thread levels  
 

• User-level threads or ULT (thread libraries)  

• Kernel-level threads or KLT (system calls)  
 
The OS keeps track of thread-specific information in a thread control block (TCB).  
An active thread can be only one of the following states:  

1.  Ready,  
2.  Running,  
3.  Blocked.  

Ready Running

Blocked

Thread created Normal termination 

Schedule & Dispatch

Resource 

requested

Resource 

allocated

 
 
a.  Thread in ready state is waiting for access to a CPU.  

 Usually there are many threads in ready state.  
 The act of giving control of a CPU to a ready state process is called dispatching.  
 The decision making process used by the OS to dertermine which ready thread moves to the  
  running state is called scheduling.  
 The OS vary in their scheduling methods (preemptive scheduling, priority-based scheduling,  
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real-time scheduling).  
b.  Once dispatched, a thread has entered the running state and retains control of the CPU until one 

of the following events:  
 

1. The thread or its parent process terminates normally;  
2. An interrupt occurs.  

c. The most common method is for the process or thread to execute an exit service call. The exit 
service call triggers a software interrupt.  

d. When any interrupt is received, the CPU automatically suspends the currently executing thread, 
pushes current register values onto the stack, and transfers control to the OS master interrupt 
handler. The suspended thread remains on the stack until interrupt processing is completed.  

e. During this period of time the thread is blocked. Once the interrupt has been processed, the OS 
can do:  

 

1. Leave the suspended thread in the blocked state,  
2. Move it to the ready state,  
3. Return it to the running state.  

 
Thread advantages over process  

 

1. Less time to create a new thread (newly created thread uses the current address space);  
2. Less time to terminate a thread;  
3. Less time toswitch between two threads within the same process;  
4. Less communication overheads (the threads share everything, particularly the address space).  
 
 

A process or program that divides itself into multiple threads is called a multithreaded.  
 
 

OSs capbilities  
MS-DOS supports a single user process and a single thread;  
UNIX supports multiple user processes but only one thread per process;  
Solaris supports multiple threads (multithreading).  

 
 
 

Compiler  
 

Compiler is a program that translaters a higher programming language into machine language.  
 

Compiler  
 

1. Minimizeses the number of operations;  
2. Replaces expensive operations with simpler ones;  
3. Minimizeses cache misses;  
4. Minimizeses object code size.  
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Compilers usually decompose programs into their basic blocks (the first step in the analysis 
process).  

 
 

Front End 
Abstract syntax tree 

Optimizer 
High-level optimizations: 

parallelization, loop transformations 
Low-level optimizations: 
redundancy elimination  

 

Back End 

Fortran 

Verilog 

IA-64

SPARC

POWER 

Object code Source code 
Intermediate form 

Machine-independent 

C (C++)

 
 
The general translation and interpretation steps that have to be taken in order to execute a program 
written in a HLL are:  
 

• Frontend compilation;  

• Determine dependences and produce data and control dependence graphs;  

• Partitioning the graph;  

• Bind partitions to nodes;  

• Bind operands to locations;  

• Bind operands to time slots;  

• Bind operations to FUs;  

• Bind transports to buses;  

• Exacurte the operations and perform the transports.  
 
The compiler affects significantly the performance of a microprocessor system. The modern 
optimizing compiler consists of a number of passes. Three classes of optimizations are performed:  
 

1. Local optimizations within a single basic block  
 Global optimizations work across multiple basic blocks.  
2. Global register allocation allocates variables to registers for regions of the code.  
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PERFORMANCE MEASURING  
 
 
 
Performance is a manner or quality of functioning, the speed of operation. It is a key to the 
effectiveness of the MPS.  
 

� The computer user is interested in reducing:  
      response time or execution time– the time between the start and the completion  

                             (te)                            of an event (more jobs in an hour).  
 

� The manager of a large data processing center is interested in increasing:  
       throughput – the total amount of work done in a given time.  
 
In comparing design alternatives often is related to the performance (P). In comparing systems X 
and Y we can state, that:  “Y is n times faster than X” if:  
 

                                                              n = teX / teY  
 

The execution time is reciprocal to the performance, i.e.  
 

                                                               te = 1 / P,  

                                                               P = 1 / te,  

                                              n = (1 / PX) / (1 / PY) = PY / PX , or  

                                                              PY = n ×××× PX  
The number of tasks completed per unit time on system Y is n times the number completed on X.  

 

The key measurement of performance is TIME  
 
Execution time can be measured in several ways:  
 

1. Elapsed time (wall-clock time) - the total time for a complete task.  
2. CPU time - the time the processor is computing and not waiting for I/O.  

 
 

Performance Measurement and Evaluation  
 
When we measure, then we determine the value of some parameter. So obtained data is 
meaningless until compared to some designed quantities, i.e. until evaluated. Evaluation of MPS is 
of vital importance in the selection of system, the design applications and analysis of existing 
systems. Performance evaluation purposes are:  
 

1. Selection evaluation in which the evaluator plans to include performance as a major criterion in 
the decision to obtain a particular system from a vendor is the most frequent case. The procedure 
includes both hardware and software evaluation.  
2. Performance projection is oriented toward designing a new system, either a hardware 
component or a software package. The goal here is to estimate the performance of a system that 
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does not yet exist. A secondary application is the projection of the performance of a given system 
on a new workload //koormus//.  
For performance projection is used different performance modeling methods – simulation and 
analytical modeling.  
3. Performance monitoring provides data on the actual performance of an existing system.  
 

No single measure of performance can give a truly accurate measure of MPS’s performance!  
In real terms it can be defined only together with the user program.  

 

The most commonly quoted measure of performance is peak performance – the maximum rate at 
which some operation can be executed.  
Peak performance is based on the clock rate of the processor and on the minimum number of 

cycles (clocks) per instruction (CPI) attainable.  
The peak performance ignores the fact that there is a mix of CPI values that depend on the 
instruction set, the cache behavior and the proportions in which instructions are executed.  
The clock rate is the second most often quoted performance figure.  
It is only a bit more meaningful than peak performance.  
 
 
 

The CPU Performance Equations  
 

tCPU = te  

tCPU = 
ogram

Seconds

Pr
  

PCPU = tCPU
-1 = te

-1  
 

tCPU  = (instruction count) ×××× (clock cycles per instruction) ×××× (cycle time)  
              Architecture           Implementation        Realization  
 

PCPU = (CPI ×××× IC)-1 × clock rate  

{PCPU = ( i

n

i

i ICCPI ×∑ )-1 × clock rate} or  

PCPU = (IPC × clock rate) × IC-1
,  

 

CPItotal = )(
1 countnInstructio

IC
CPI i

n

i

i −
×∑

=

 ,   where  

countnInstructio

ICi

−
  is a frequency of i-type instructions.  

CPI - clock cycles per instruction; IPC - instructions per clock cycle (per clock); IPC = CPI-1;  
IC – the instruction count (number of instructions executed).  

tCLK  - cycle time ; f – clock rate (f = tCLK
-1);  
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� The clock rate (f) depends on the technology used to implement the processor.  
� The average IPC depends on processor microarchitecture.  
� The instruction count (IC) depends on instruction set architecture, compiler, and the 

operating system.  
 

Average IPC reflects the average instructions throughput achieved by the processor and is a 
key measure of microarchitecture effectiveness.  

 
The use of CPI was popular during the days of scalar pipelined processors.  
For superscalar processors, it becomes more convenient to use IPC.  

 
An ideal scalar processor pipeline would execute instructions at rate of one per cycle, resulting 
in a core CPI = 1. This CPI assumes that all memory references are hits in the cache cycles.  

 
The actual CPI of the processor is equal to:  

 

 
 
 
 

Computer Performance Metrics  
 

o MIPS  –  Million Instructions per Second;  
o BIPS, BOPS, GIPS, GOPS  –  Billions (Giga ) (109) of Instructions /Operations per 

Second;  
o TOPS  –  Trillions or Tera (1012) Operations per Second;  
o FLOPS  –  Floating Point Operations per Second;  
o CPS or COPS  –  Connections per Second.  

 
 

Remark  
 

1. MIPS = Clock rate (f) / (CPI × 106)  
2. MIPS are misleading because the work done by an instruction varies.  
3. FLOPS, LIPS, COPS are more meaningful because they specify a particular 

operation, but they are often calculated.  
 
 

 

PCPU = IPC ×××× IC-1 × f  
  PCPU = CPI-1 × IC-1 × f  

 

CPI = CPIcore + MCPI,   where  
 

MCPI is the memory-cycles-per instruction.  
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Rating Technology  
 
The application ratings //reiting, tootlus// are based on a comparison of workload run times 
between the system being tested and a fixed calibration platform.  
A rating of 100 indicates that the system has performance equal to that of the calibration platform, 
200 indicates twice the performance of the calibration platform.  
 
 
 

Performance-analysis Technologies  
 
o Bottleneck //kitsaskoht// - the bottleneck is the resource with the lowest maximum performance.  
o Latency //latentsusaeg// - delay between start and end of operation  
o Response time //reaktsiooniaeg// - delay between request and response.  
o Throughput //läbilaskevõime, jõudlus// – the amount of work done per unit time,  
        (Capacity)                                                or the rate at which new results arrive.  
o Bandwidth //ribalaius// - used to describe the theoretical maximum throughput  

 of a data link or other device.  
o Availability //käideldavus// - fraction of time that a resource is available for use.  
o Utilization //kasutatavus// - fraction of time a resource is busy.  

Metric is used only inside a system.  
o Accuracy //täpsus// - indicates how closely performance measurement results obtained when using  
                                         the technique correspond to the results that would have been obtained on  
                                         a real system.  
 
 
 

Factors which Determine the MPS Performance  
 
1.  Algorithm and data set (size, length of execution, pattern of access);  
2.  Compiler (efficiency of code generated , ability to optimize access patterns);  
3.  Instruction set (how many instructions does it take to encode the program);  
4.  Available operations (floating point support, multimedia instructions);  
5.  Operating system (timeout period and cost, other processes);  
6.  Clock rate;  
7.  CPI (IPC);  
8.  Memory system organization (memory hierarchy, cache system, hit rate, miss penalty);  
9. Technology, etc.  
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Benchmarks  
 
 
Benchmark – program or program fragment and related data inputs that are executed to 
test  
                        the performance of hardware component, a group of hardware or software 
components, or an entire computer system or network.  
 

The goal of benchmarking is to predict the performance of a workload on a particular 
platform.  
 

Workload – the amount of work which a computer has to do.  
There are two ways in which workloads can be constructed:  

 

1. Model workloads  
2. Synthetic workloads  

 
 

Benchmark Types  
 
Benchmarks can be designed to focus on performance of individual components (CPU, 
cache, memory, I/O, graphics, and network resources), or on application (or system) 
performance:  
 

1. Component benchmarks (microbenchmarks)  
They measure the performance of a single aspect of a system.  
 

2. Application benchmarks (macrobenchmarks)  
They evaluate the performance of many system components working together to produce 
the throughput that a user perceives.  
 

 Real programs (representative or real workload);  
 Kernels (representative program fragments);  
 Mixes (instruction frequency of occurrence);  
 Synthetic benchmarks (programs intended to provide a specific mix).  
 

Benchmark sources  
 

1. Vendor specific benchmarks (iCOMP)  
2. User organizations who share their benchmarks (Linpack)  
3. Industry organizations (SPEC, EEMBC)  
      (EEMBC – Embedded Microprocessor Benchmark Consortium)  

 
 

Benchmark Examples  
 

1. MIPS (Millions of Instructions Per Second).  
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The MIPS is related closely to the clock rate of the processor. Using MIPS as a tool to 
determine relative performance of different computers is very dangerous, so:  
 

MIPS are only useful for comparison between two processors from the same vendor that 
support the same instruction set with the same compilers.  
 

2. Linpack  
The Linpack benchmark uses a set of high performance library routines for linear algebra.  
These routines are used to measure the time it takes to solve a dense system of linear 
equations.  
The benchmark reports average megaflops rates by dividing the total number of floating-
point operations by time. There are several versions of the Linpack benchmark, differing in 
size, numerical precision and ground rules.  
 

3. Whetstone  
The first synthetic benchmark program that was designed for performance testing.  
The program was designed primarily to measure floating-point performance. 
Performance is quoted in MWIPS (millions of Whetstone instructions per second).  
 

4. Dhrystone  
It is a synthetic integer performance benchmark that was developed in 1984. Benchmark 
contains less than 100 HLL statements, compiling to 1-1,5 kB of code.  
 

 5. HINT  
HINT (Hierarchical INTegration) is a computer benchmark that ranks a computer 
system as a whole.  
Most benchmarks measure either the number of operations in a given time period, or the 
time required to perform a given fixed calculations. HINT does neither; rather it performs 
a particular calculation with ever-increasing accuracy.  
The accuracy of the result at any given time is called the “Quality”. HINT measures the 
improvement of quality at any given time as “Quality Improvements Per Second” or 
QUIPS.  
HINT rating is a function of raw CPU processing power, L1 and L2” cache size and 
speed, and main-memory bandwidth. HINT allows comparisons over extreme variations in 
computer architecture, absolute performance, storage capacity and precision.  
 

6. SPEC Benchmarks  
A group called the Systems Performance Evaluation Co-operative (SPEC) or Standard 
Performance Evaluation Corporation formed to establish and maintain a standard set of 
relevant benchmarks that can be applied to the newest generation of high 
performance computers. The first SPEC benchmark suite was called SPEC89.  
It consisted of the geometric mean of the runtimes for 10 programs in the suite.  
The benchmark did not differentiate between integer and floating-point performance.  
 

The SPEC92 benchmark has 20 programs in the CPU benchmark suite.  
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SPEC92 is reported in two summary figures – floating-point (SPECfp92) and integer 
(SPECint92).  
The SPEC95 is an improvement of the SPEC92 benchmark.  
In addition to the SPECfp95 and SPECint95 numbers, there are several related 
benchmark suits (SPECint_base95, SPECint_rate95).  

SPEC CPU2000 benchmark suite  
The SPEC CPU 2000 suite consists of integer (SPECint2000) and floating-point 
(SPECfp2000) benchmark suites. The first one consists of 12 tests in C and C++. The 
second one has 14 tests (Fortran-90, Fortran-77, and C). The CPU tests are designed to test 
three parameters: the CPU, the memory hierarchy and the compilers.  
The performance is stated relative to a reference machine, a 300-MHz Sun Ultra5-10, 
which gets a score of 100.  
SPEC CPU 2006  
SPEC CPU2006 includes two benchmark suites: CINT2006 for measuring compute-
intensive integer performance and CFP2006 for compute-intensive floating point 
performance.  
The CINT2006 suite includes 12 application-based benchmarks written in C and C++ 
languages. CFP2006 includes 17 CPU-intensive benchmarks written in C, C++, 
FORTRAN and a mixture of C and FORTRAN. 
Performance metrics within SPEC CPU2006 measure system speed and throughput. 
The speed metrics, SPECint2006 and SPECfp2006, compare the ability of a computer to 
complete single tasks.  
The throughput metrics, SPECint_rate2006 and SPECfp_rate2006, measure the rate at 
which a computer can complete a number of tasks in a given amount of time.  
The reference machine for SPEC CPU2006 benchmark is a Sun Ultra Enterprise 2 
workstation with a 296-MHz UltraSPARC II processor.  
 

7. Transaction Processing Benchmarks //tehingtöötluse jõudlustestid//  
The Transaction Processing Council (TPC) is an industry-based organization 
representing computer systems and database vendors. The TPC benchmarks measure 
transaction processing (TP) and database (DB) performance in terms of how many 
transactions a given system and database can perform per unit of time (transactions per 
second (or minute)) within a given response time limit.  
TPC benchmarks are classified into two categories – Online Transaction Processing 
(OLTP) //sidustehingtöötlus// and Decision Support Systems (DSSs) //nõustussüsteem//.  
DSSs are used for business analysis purposes, to understand business trends.  
 

TPC-App  
TPC-App is a synthetic benchmark for measuring application server performance and 
web services performance. There are two performance metrics. The first is the Web Service 
Interactions //teeninduslikku andmevahetust// per second (SIPS) per Application Server 
SYSTEM. The second is the Total SIPS, which is the total number of SIPS for the entire 
tested configuration (SUT).  

 
TPC-C  

TPC-C is a benchmark for OLTP. It models simple order-entry applications. TPC-C 
performance is measured in new-order transactions per minute (tpmC).  
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TPC-H  
The TPC-H is a DSSs benchmark. It consists of a suite of business-oriented queries and 
concurrent data modifications. The performance metric is the TPC-H Composite Query-
per-Hour Performance Metric (QphH@Size), which reflects multiple aspects of the 
capability of the system to process queries. The TPC-H Price/Performance metric is 
expressed as $/QphH@Size.  
 
 
 

Benchmarks for Different Categories of Workloads  
 

 

Workload Category 
 

 

Benchmark Suite  
 

CPU benchmarks 

      Uniprocessor  
 
 
      Parallel processor  
 
      Multimedia  
      Embedded  
      DSP  

Transaction processing 

On-line transaction processing (OLTP)  
Decision support systems (DSS)  

Web server  

 

 

Mail-server  

Network file system  

Personal computer  

 

 
      SPEC CPU2000  
      Java Grande Forum Benchmark  
      SciMark  
      SPLASH  
      NASPAR  
      Media Bench  
      EEMBC benchmarks  
      BDTI benchmarks  
 
      TPC-C  
      TPC-H  
      SPEC web99  
      TPC-W  
      Volano Mark  
      SPECmail 2001  
      SPEC SFS 2.0  
      SYSMARK  
      Ziff Davis WinBench  

 
 

Performance Metrics 
Not-so-good Performance 

Metric
Better Performance 

Metric

Clock 
Rate 

MIPS MFLOPS SPEC QUIPS
Execution 

Time 
 

 

Popular benchmarks typically reflect yesterday’s programs, but microprocessor systems need to be 
designed for tomorrow’s programs.  
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Example  
 
We are going to run three benchmark programs A, B, C on brands X, Y and Z. The results are 
given in time units.  
 
 

Benchmark Raw Time Results  

 
                            Program / Contribution Rate  
 

 
 
          Brand  
                A  

             65%  
               B  
             25%  

              C  
            10%  

 
             X  
 

 
            302  

 
            674  

 
             420  

 
             Y  
 

 
            349  

 
            781  

 
             464  

 
             Z  
 

 
            290  

 
            694  

 
             421  

 
 
 
 
 
 
 

Benchmark Normalized Time Results  

 
                            Program / Contribution Rate  
 

 
 
          Brand  
                A  

             65%  
               B  
             25%  

              C  
            10%  

 
             X  
 

 
            1,04  

 
            1,00  

 
            1.00  

 
             Y  
 

 
            1,20  

 
            1,16  

 
            1,10  

 
             Z  
 

 
            1,00 

 
            1,03  

 
            1,00  
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 Accumulated Benchmark Time  
 

 Brand X  
1,04 x 0,65 + 1,00 x 0,25 + 1,00 x 0,1 = 1,03  

 Brand Y  
1,20 x 0,65 + 1,16 x 0,25 + 1,10 x 0,1 = 1,18  

 Brand Z  
1,00 x 0,65 + 1,03 x 0,25 + 1,00 x 0,1 = 1,01  

 
 
 

Beware pitfall!  
 

An inviting method of presenting computer performance is to normalize execution times (te) to  
a reference computer, and then take the average of the normalized execution times.  

If we average the normalized execution time values with arithmetic mean (Tam), where  
 

Tam = ∑
=

n

i

tei
n 1

1
.  

The result will depend on the choice of the computer we use as the reference.  
 

For example in the next case the program execution times are normalized to both A and B computers, and 
the arithmetic mean is computed.  
When we normalize to A, the arithmetic mean indicates that A is faster than B by 5.05 times, which is the 
inverse ratio of the execution times.  
When we normalize to B, we can conclude, that B is faster by exactly the same ratio.  
 

Both results cannot be correct!  

If we use the arithmetic mean, we can get confusing results.  
 

Normalized to A 
 

Normalized to B 
 

 
 

 

Time on 
A 

 

Time on 
B       A      B       A       B  

 

Program 1 
 

 

        1 
 

      10  
 

      1  
 

   10  
 

     0,1  
 

      1  

 

Program 2 
 

 

     1000  
 

     100  
 

      1  
 

    0,1  
 

     10  
 

      1  

 

Arithmetic mean 
 

 

     500,5  
 

      55  
 

      1  
 

  5,05  
 

   5,05  
 

      1  

 

Geometric mean 
 

 

      31,6  
 

    31,6  
 

      1  
 

     1  
 

     1  
 

      1  

 
Because we want to determine the computers relative performance, we should use an average  

that is based on multiplicative operations. The geometric mean is (Tgm) such an average:  
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Tgm = n

n

i

tei∏
=1

 ;  

Tam  ≥  Tgm.  
 
 

Conclusion:   The two computers A and B are actually equal in performance.  
 
 
 

Performance Measurement  
 
Performance measurement can be done via the following means:  
 

1. On-chip hardware monitoring  
(Pentium 3, Pentium 4, POWER 4, POWER 5, Athlon, Alpha, UltraSPARC)  
2. Off-chip hardware monitoring  

a. SpeedTracer (AMD)  
b. Logic analyzers  

3. Software monitoring  
 

Many systems are built with configurable features. Measurement on such processors can reveal 
critical information on effectiveness of microarchitectural structures, under real-world workloads.  
 
 
 

Performance Estimation (Projection)  
 

If the absolute drop-dead project performance goal is 1,3× some existing target, then the early 

product concept microarchitecture ought to be capable of some much higher number like 1,8×.  
Dave Sager, one of the principal architects of the Pentium 4.  

Some Benchmarking Mistakes  
 

1.  Only average behavior represented in test workload;  
2.  Caching effects ignored;  
3.  Buffer sizes not appropriate;  
4.  Ignoring monitoring overhead;  
5.  Not ensuring same initial conditions;  
6.  Not measuring transient (cold start) performance;  
7.  Using device utilizations for performance comparisons;  
8.  Collecting too much data but doing too little analysis, etc.  

 
 
 
 
 



 27 

Summary  
 

Performance Evaluation Techniques  

 

Purpose of evaluation  
Selection 

evaluation  
Performance  
  projection  

Performance  
  monitoring  

 
 

Evaluation  
technique  

 New  
HW  

New  
SW  

Design  
new HW  

Design  
new SW  

Reconfigure  
HW  

Change  
SW 

 

Instruction mixes  
 

Kernel programs  
 

Analytic models  
 

Benchmarks  
 

Synthetic programs  
 

Simulation  
 

HW &SW monitoring  
 

 

C 
 

B 
 

B 
 

A 
 

A 
 

A 
 

B 
 

 

─ 
 

C 
 

C 
 

A 
 

A 
 

A 
 

B 
 

 

C 
 

B 
 

B 
 

─ 
 

B 
 

A 
 

B 
 

 

─ 
 

C 
 

C 
 

B 
 

B 
 

A 
 

B 
 

 

─ 
 

─ 
 

B 
 

B 
 

B 
 

A 
 

A 
 

 

─ 
 

C 
 

─ 
 

B 
 

B 
 

A 
 

A 
 

 

A – satisfactory;  
B – provides some assistance but is insufficient. It should be used in conjunction with  
       other techniques;  
C – has been used but is inadequate;  
“─“ the technique is not applicable.  
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AMDAHL’S LAW  
 
 
 

THE PERFORMANCE IMPROVEMENT TO BE GAINED FROM USING 

SOME FASTER MODE OF EXECUTION IS LIMITED BY THE FRACTION 

OF THE TIME THE FASTER MODE CAN BE USED.  
 
 

Speedup (can be gained by using a particular feature) – S  
 

S => (Performance for entire task using the enhancement) / (Performance for entire  
             task without using the enhancement)  
 

S  => (Execution time for entire task without using the enhancement) / (Execution time  
              for entire task using the enhancement)  
 
 

Speedup Factors  
 

1. Fraction enhanced – FE or fx  
 
FE (fx) is the fraction of the computation time in the original system that can be converted to take 
advantage of the enhancement1.  
 

1 ≥≥≥≥ fx  
 

2. Speedup enhanced – SE or Sx   
 
The improvement gained by the execution enhanced mode.  
 

Sx > 1  
 

Speedup overall – SU  
 
 

Execution Time  
 

Execution time old  
Execution time new  

 

The new execution time is equal to the time spent using the unenhanced portion of task plus the 
time spent using the enhancement.  

                                                 
1 Enhancement – a substantial increase in the capabilities of hardware or software.  
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Execution time new = Execution time old × {(1-Fraction enhanced) + 
enhancedSpeedup

enhancedFraction

−
−

} =  

= (Execution time old × Fraction old) + (Execution time old × 
enhancedSpeedup

enhancedFraction

−
−

)  

 
 

Execution time new = Execution time old × [(1-fx)+(fx/Sx)]  
Speedup overall = Execution time old / Execution time new   

 
 
 
 
 
 
 
 
 
 

An overall assumption of Amdahl`s Law is that the performance improvements 

are performed to be isolated from one another.  
 
 

Conclusions  
 

 
 

 
 
Amdahl’s Law can serve as a guide to how much an enhancement will improve performance 

and how to distribute resources to improve  
 

Cost / Performance ratio  
 
To compare the performance of a new (modified) microprocessor A and old microprocessor B  
we can use the speedup (speedup A) as a function of the appropriate CPIs or IPCs:  
 

Speedup (A) = CPIB / CPIA = IPCA / IPCB  
 

 

 

SU = [(1-fx)+fx/Sx]
-1  

 

Sx = (fx×SU)/(SU×(fx-1)+1)  
fx = (Sx×(1-SU))/(SU×(1-Sx))  

 

 

1. If the fraction of execution time reduced very small, then even 

a very large speedup for that piece will have very little impact on 

overall performance.  
 

2. Resources are often better spent on small improvements for 

the most common operation instead of large speedups for rare 
events.  
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The comparison is valid only if:  
 

a. Both microprocessors (A and B) have the same clock cycle time, and  
b. Both microprocessors run the same number of instructions (the same instructions in test  

program).  
 

This assumption generally holds for the complete execution of single-threaded, uniprocessor, user-
level programs. Multithreaded programs present a more complicated problem.  
 

Amdahl’s law applies only to improvements in IPC.  
 

o More functional units allow higher instructions issue width.  
o Better reordering algorithms reduce processor pipeline stalls.  
o More specialized logic reduces the latency of computations.  
o Large caches can reduce the average latency of memory accesses.  

 

All these microarchitectural changes improve IPC but at the cost of design complexity and 
die area.  

 
 
 

Extending Amdahl’s Law to Multiple Enhancements  
 
Suppose that i enhancements are used in the new design and each enhancement affects a 
different portion of the system (code, hardware). Only one enhancement can be used at a time, 
then the resulting overall speedup is equal to (where all fractions fi refer to original execution 
time before enhancements were applied):  
 

Speedup = 
∑ ∑+−

i i
iii

Sff )/)1((

1
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MICROPROCESSORS TAXONOMY  
 

 

The first microprocessor, the Intel 4004, was introduced in 1971.  
 

I   During the first decade (1971-1980), the advent of the 4-bit microprocessors led to the 
introduction of the 8-bit microprocessors. The 8-bit microprocessors became the heart of the 
simple personal computers.  

II The second decade (1981-1990) witnessed major advantages in the architecture and 
microarchitecture of 16-bit and 32-bit microprocessors. Instruction set design issues became the 
focus of researches. Instruction pipelining and cache memories became standard microarchitecture 
techniques.  

III The third decade (1991-2000) was characterized by extremely aggressive microarchitecture 
techniques to achieve very high levels of performance. Deeply pipelined machines capable of 
achieving extremely high clock frequencies and sustaining multiple instructions executed per cycle 
became popular. Out-of-order execution of instructions and aggressive branch prediction 
techniques were introduced to avoid or reduce the number of pipeline stalls.  

IV Now the fourth decade (2001-2010?) is focuses on instruction-level parallelism (ILP) will 
expand to include thread-level parallelism (TLP) as well as memory-level parallelism (MLP). 

4004 

1974 

1971 

~1980 

 

~1995 

CISC RISC MCU 

RISC 
MCU 

CISC 
MCU 

Superscalar 

DSP 

Microprocessor Architecture Development Main Trends 

1979 
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Architectural features that historically belong to large systems (multiprocessors and memory 
hierarchies), will be implemented on a single chip. Many traditional macroarchitecture issues will 
now become microarchitecture issues.  
Power consumption will become a dominant performance impediment.  
 
 
 

Evolution of Microprocessors  
  (by J. P. Shen and M. H. Lipasti)  

 

  

1970-1980 
 

 

1980-1990 
 

 

1990-2000 
 

 

2000-2010 
 

 

Transistor count 
 

 

2K - 100K 
 

 

100K - 1M 
 

 

1M - 100M 
 

 

100M - 2B 
 

 

Clock frequency 
MHz 

 

 

0,1 - 3 
 

 

3 - 30 
 

 

30 - 1000 
 

 

1000 - 15000 
 

 

Instructions per 
Cycle (IPC) 

 

 

0,1 
 

 

0,1 - 0,9 
 

 

0,9 - 1,9 
 

 

1,9 - 2,9 
 

 
There are different ways how describe different microprocessor structures. Each classification 
holds an abundant variety of processor organization.  
The simplest way to classify microprocessor structures may be next:  
 
 

By input signals  
 

1. Digital MP;  
2. Analog MP:  

DSP;  
Media processor;  

 
By timing  
 

1. Synchronous MP;  
2. Asynchronous MP (internally).  

 
By purpose  
 

1. Universal MP;  
2. Special-purpose MP:  

[Microcontrollers].  
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By resources  
 

1. One level;  
2. Multilevel.  

 
By the number of tasks  
 

1. One task MP;  
2. Multiple tasks MP.  

 
By chip implementation (figure 1) 
 

1. One chip MP;  
2. Multiple chip MP;  
3. Bit-slice MP;  
4. Multi-chip module MP;  
5. Multi-core MP.  

 
By internal bus organization (figure 2)  
 

1. One bus MP;  
2. Multiple buses MP.  

 
By control unit organization  

 
Microprocessor’s control unit (CU) can be implemented in two schemes:  

 
1. Hardwired control unit (HCU);  
2. Microprogrammed control unit (MCU).  

 
 
 

Comment  
 
The MCU scheme is more flexible than the HCU. The meaning of an instruction can be hanged by 
changing the microinstruction sequence corresponding to the instruction. The instruction set can be 
extended simply by including a new ROM (a new ROM content) containing the corresponding 
microoperation sequences. Hardware changes to the CU are minimal.  
 

In an HCU any change to the instruction set requires substantial changes to the hardwired logic but 
HCUs are generally faster than MCUs and used where the CU must be fast.  
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EU

CU

IOU

CU

IOU

EU

EU 1 EU 2 EU 3 EU n

CU 1 CU 2 CU 3 CU n

IOU1 IOU2 IOU3 IOUn

EU

CU

IOU

FUx

Bit-slice microprocessor Multi-module microprocessor

Intel P6

One-chip microprocessor

Intel P5

Multi-chip microprocessor

IMP 4 (National)
K 588 (SU)

EU EU

EU EU

CU CU

IOU

IOU

IOU
Internal
Bus

IOU

CU CU

Multi-core microprocessor

Intel 3002

The data word length in one slice
is (2 to 4) or (8 to 16) bits

Quad-Core Intel Xeon
Eight-Core Sun Open SPARC T2

Microprocessor Implementation
Models



 35 

n

n

n

n

n

n (2n)

RGF

RGF

RGf

RGf

RGf

RG (TEMP)ACC

ACC

Data bus (DB) 

DB1

DB2 

DB1

DB2 

DB3 

I/O data

I/O data

I/O data

RGF
(multiported)

CPU microarchitecture 

CISC microprocessors 
(2 phases) 

Intel 8086 
Motorola 68000 

CISC microprocessors
(3 phases) 

Intel 8080 
Zilog Z80

Motorola M6800 

OC
ADDR1

RD
ADDR2

SR1
ADDR3

SR2

OC
ADDR1 

/RG/

ADDR2 

/RG or mem/

OC
ADDR
/mem/

A.

B.

C.

Internal bus organization 

RISC and Post-RISC  microprocessors
Bit-slice microprocessors 

(1 phase) 

MIPS R4000 
Intel Pentium 4 
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n

n

n

n

n

k x n

k x n

k x n

C

C

C

C

C

DMux

DMux

Mux

Mux

Mux

k x n

k x n

Y1

Y2

Y3

Y4

Y5

DB 3

Register file 
k x  n-bits 

DB1DB2

k - the number of registers 
n - the register's length (in bits) 
Yi - the control word i  

Multiport register file organization 

 
 
 
 

Example  
 
The speed-up (%Su) to be expected from the decrease in CPI period due to the different data 
path’s bus-system organization is:  
 

%Su = 100
)1(

)1(
×

+

+−

iTb

iTbTbi
,   where  

 

Tb – the operation execution time, using i buses (i 1≥ ) is:  
 

Tb = IC × CPI × t, where  

IC – instruction count;  
t – clock cycle time;  
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Assume, that IC will be not change (IC=const.) when going from the i–bus to the (i+1)-bus system 
in the microprocessor’s microarchitecture.  
 

CPI Count  
 

 
3-phase structure  

 

 
2-phase structure  

 

 
1-phase structure  

 
 

One bus  
 

 
Two buses  

 

 
Three buses  

 

 
CPI = 3  

 

 
CPI = 2  

 

 
CPI = 1  

 

 

%Su i>(i+1) = = 100
)1(

)1(
×

×+×

×+×−××

tiiCPIIC

tiiCPIICtiCPIiIC
  

 

%Su 1>2 = 100
12

1213
×

×

×−×

t

tt
= 100

2

1
×  = 50%  

 

%Su 2>3 = 100
11

1112
×

×

×−×

t

tt
=1×100 = 100%  

 

%Su 1>3 = =×
×

×−×
100

11

1113

t

tt
2×100 = 200%  

 
As the 2-bus or 3-bus structure increases the clock cycle (approximately by 10%) period, as a result of 
increased signal propagation time over the additional buses, then  
 

t2 = 1,1×t1,  
t3 = 1,1×t2 = 1,21×t1.  

 
 and  
 

%Su 1>2 = %3,36100
11,12

11,1213
100

22

2213
=×

××

××−×
=×

×

×−×

t

tt

t

tt
  

 

%Su 2>3 = %8,81100
21,11

21,1122
100

31

3122
=×

××

××−×
=×

×

×−×

t

tt

t

tt
  

 

Su 1>3 = %9,147100
121,1

121.113
100

31

3113
=×

×

×−×
=×

×

×−×

t

tt

t

tt
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n

n n nn

n

m

k(n)

Control 
bus

Data 
bus

Address 
bus

Bus interface 
unit

Control unit

Decoder

Control unit's
 kernel

to the functiomal units 

Internal (system) bus

Integer ALU unit

ADD/SUB
Register 

file

Control bus

Data bus 

Address bus

To the SYSTEM BUS

Earliest microprocessor's architectural model 
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MEMORY-STORAGE DEVICES  
 

                                      MSD  
 

 
 

         Primary storage                      Secondary storage  
 
 
 
 

     RAM               ROM                 Magnetic             Optical  
 
 
 
 

    CAM               ROM                     M-disk             CD-ROM  
    SRAM             PROM                   M-tape             WORM (CD-R)  
    DRAM              (OTP)                                      Magneto-optical CD-RW  
   TSRAM           RPROM                                               DVD  

Molecular RAM           EEPROM                                    Holographic DVD  
 Holographic RAM                                                                     (HDVD)  

     (HRAM)  
 

                        Flash ROM  
                        EEPROM  
                        [UVROM]  

 
Word is a natural unit of organization of memory.  

Unit of transfer for main memory is generally is word, but not always the unit of transfer is not equal 
to a word or to an addressable unit.  
As for external memory, data are often transferred is much larger units than a word, and these are 
referred to as blocks.  
Latency of the memory (L) – the time delay from when the processor first requests data from memory 
until the processor receives the data.  
Memory bandwidth (BW) – the rate in which information can be transferred from the memory system.  

 

An Ideal Memory  
1. Infinite capacity;  
2. Infinite bandwidth (for rapidly streaming large data sets and programs);  
3. Zero latency (to prevent the processor from stalling while waiting for data or program code);  
4. Nonvolatility (to allow data and programs to survive even when the power supply is cut off);  
5. Zero or very low implementation cost.  
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Examples of Memories Internal Organization  
 
 

SDRAM - synchronous dynamic RAM 

SDRAM presents an architectural advance ⇒ multiple memory banks.  
Each memory bank has its own independent page buffer, so that two separate memory pages can be 
simultaneously active. A DRAM memory address is internally split into a row address and a column 
address.  
The row address selects a page from the storage and the column address selects an offset within the selected 
page. Synchronous DRAMs access modes include:  
 

1. Burst read/write mode (fast successive accesses to data in the same page);  
2. Interleaved row read/write mode (alternating burst accesses between banks);  
3. Interleaved column access mode (alternating burst accesses between two chosen rows in different banks).  

 

SDRAM incorporates features that allow it to keep pace with system bus speeds. SDRAM uses a clock 
input for synchronization whereas the DRAM is an asynchronous memory. DRAM uses two clocks  
(RAS and CAS). Each operation of DRAM is determined by the timing phase differences between these 
two clocks.  

 
Z–RAM - zero capacitive RAM  

Z-RAM is a capacitor-less, single-transistor DRAM technology that exploits the intrinsic floating-body 
effect of silicon-on-insulator devices. Z-RAM`s cell size can be half the size of an embedded DRAM 
transistor plus capacitor cell. It is less than a fifth the size of a six-transistor SRAM equivalent.  
Z-RAM s small cell size results in higher memory density, low cost and the small cell size reduces the 
probability of memory cell alpha particle hits, which improves soft error rate performance up to 10 
times over SRAM.  

 
DDR-SDRAM - double-data-rate SDRAM  

Internally DDR memory is similar to standard SDRAM, but employs four internal memory banks, 
which feed into an output data buffer.  

 
SLDRAM - synchronous link DRAM  

Similar to SDRAM, but it packs eight internal memory banks. Employs a programmable data burst 
transfer protocol. Like DDR-SDRAM, SL-DRAM uses both rising and falling clock edges to transfer 
data. Its bus interface is designed to run at clock speeds of 200-600 MHz and has a two-byte-wide 
datapath.  

 
MDRAM – multi-bank DRAM  

Internally MDRAM uses 32 banks per megabyte, where each bank has its own I/O port that feed into a 
common internal bus. Data can be read or written to multiple banks simultaneously. This permits to 
handle many overlapping data transactions.  

 
ESDRAM - cache-enhanced DRAM  

ESDRAM combines a DRAM and 4-kbit cache on the same chip. DRAM is a synchronous DRAM, 
which has four internal databanks.  

 
VRAM - video RAM  

Video RAM bases on DRAM architecture. VRAMs have one or two special serial ports. VRAM is 
frequently referred to as dual-port or triple-port memory. The serial ports contain registers (SAM) 
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which may hold the contents of whole row. SAM cells are used as a shift register and are usually made 
with either standard SRAM cells or multiple transistor DRAM cells.  
It is possible to transfer data from the whole row memory array to the register in single access cycle. 
Because the register is based on fast, static cells, the access to it is very fast, usually several times faster 
than to the memory array. In most typical applications VRAM is used as screen buffer memory.  
The parallel port is used by host processor, and the serial port is used for sending pixel data to the 
display. The DRAM and SAM ports can be independently accessed at any time except during on 
internal transfers between the two memories.  

 
 

  
Data transfer mode in the VRAM’s DRAM:  

READ => MODIFY => WRITE BACK  \block transfers\  
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WRAM - window RAM  
WRAM is a variation on dual-ported memory. WRAM is optimized for acceleration and can transfer 
blocks and supports text and pattern fills. Its two ports allow input of graphic drawing and output of 
screen refresh data to be processed simultaneously, resulting in much higher bandwidth than 
conventional single-ported memory types.  
Fast block copies and fills are called window operations. WRAM is accessed in blocks or windows, 
which makes it slightly faster than VRAM. Now WRAMs are replaced by SGRAMs.  

 
SGRAM - synchronous graphic RAM  

SGRAM contains the speed-enhancing features of SDRAM. Like SDRAM, SGRAM can work in 
synchronously with system bus speed. It has the graphic capabilities that enhance 3D graphics 
performance. SGRAM is single-ported, but it can open two memory pages at once, simulates the dual-
port nature of other video-RAM technologies.  

 
3D-RAM  

3D-RAMs are used in video cards in tandem with a 3D graphics accelerator. The memory contains a 
CDRAM (cached DRAM) array and an ALU block, which allows some image manipulation 

operations to be performed.  
 
 
 
 
 

Literature  
1. Bruce Jacob, Spencer W. Ng, David T. Wang. Memory Systems: Cache, DRAM, Disk.  
Elsevier, 2008.  
2. Betty Prince. Emerging Memories. Technologies and Trends. Kluwer Academic Publishers, 
2002.  
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MEMORY SYSTEM HIERACHY  

CPU

Main 
Memory 

External 
Memory 

Archive 
Memory 

Registers 

SRAM 

DRAM

SRAM 

L1- & L2-Cache 
Memory 

L3-Cache 
Memory 

Virtual Memory System 
(Mi) 

Memory System Levels 

Flash Drive 
HDD

(DAM*) 

Network 
(Remote storages) 

Virtual Disk Memory System 
(Mi+n) 

Lower level memories 

Buffer Memory System 
(Mi-k)

Higher level memories 

 
Each memory level of the hierarchy is usually a subset of the level below (lower level) - data 
found in a level is also found in the level below. The storage devices get slower, large and cheaper 
as we move from higher to lower levels. At any given time, data is copied between only two 
adjacent memory levels.  
 

Access time – time to get the first word. Access time is composed of address setup time  
                        and latching time (the time it takes to initiate a request for data and prepare 

access).  

An average (effective) access time (tavg) or AMAT (average memory access time) is equal to:  
 

AMAT = tavg = thit + mR ×××× tmiss   
tmiss = tpenalty; mR – miss rate  

 

Transfer time – time for transferring remaining words.  
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Memory System Management Goals  
 

1. Protection (protect each process from each other and protect of the OS and of the users);  
2. Utilization (ensuring full use of memory);  
3. Allocation (each process should get enough memory space);  
4. Address mapping.  

 
Terminology  

 
1. Block (page)  -  maximum unit that may be present (usually has fixed length).  
2. Hit  –  block is found in upper level.  
3. Hit rate (ph)  -  number of hits / total number of memory accesses.  
4. Miss  –  block not found in upper level.  
5. Miss rate (mR)  –  fraction of references that miss.  
6. Hit time (thit)  –  time to access the upper level.  
7. Miss penalty (tmiss, tpenalty)  -  time to replace block in upper level,  

                                                 (plus the time to deliver the block to the CPU).  
 
 
 

Information in Memory System  
 
Information that stored in memory system hierarchy levels  
 

M1,  M2,…,  Mi-1,  Mi,  Mi+1,…, Mn-1,   Mn  
where M1 is the highest level and Mn is the lowest level,  

 

must satisfy three main properties:  
 

1. Inclusion //sisalduvus//;  
2. Coherence //koherentsus//,  
3. Locality //lokaalsus//.  

 
Inclusion  

 

The inclusion property implies that all information items are originally stored in the outermost  
(in the lowest) memory level.  
 

Mi-1 ⊂⊂⊂⊂ Mi ⊂⊂⊂⊂ Mi+1  
 

Coherence  
 

A memory is coherent if the value returned by a read operation is always the same as the value 
written by the most recent write operation to the same memory address.  
The coherence property requires that all copies of the same information item at successive memory 
levels be consistent. The concept is to balance system to adjusting sizes of memory hierarchy 
components.  
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Locality  
 

Memory hierarchy exploits locality to create illusion of large and fast memory.  
The memory hierarchy was developed based on a program behavior known as locality references.  
 
 Dimensions of locality property:  
 

1. Temporal locality – recently referred items (instructions or data) are likely to be referred 
again in the near future.  
2. Spatial locality – the tendency for a process to across items whose addresses are near one 
another. Spatial locality implies temporal locality, but not vice versa.  
3. Sequential locality – in typical programs the execution of instructions follows in a 
sequential order (unless branch instructions).  
Sequential locality is a subset of spatial locality.  

 
 
 

Buffers and Caches  
 

A.  Buffer  
 

A buffer is a small storage area (usually DRAM or SRAM) used to hold data in transit from one 
device to another. Buffers resolve differences in data transfer rate or data transfer unit size.  
 

B.  Cache  
 

A cache is a storage area (usually RAM), which differs from a buffer in several ways:  
 

1. Data content is not automatically removed as it is used,  
2. Cache is used for bidirectional data transfer (versus input or output buffer),  
3. Cache is used only for storage devices access (not for I/O devices),  
4. Caches are usually much large than buffers,  
5. Cache content must be managed intelligently.  

 
Cache Controller  

 

A cache controller is a processor that manages cache content. A cache controller can be 
implemented in:  
 

a. a storage device controller or communication channel, as a special–purpose processor 
controlling RAM.  

b. the operating system, as a program that uses part of primary storage to implement the cache.  
 

Primary Storage Cache  
 

One way to limit wait states is to use an SRAM cache between the CPU and primary storage 
(main memory). Usually is used multilevel primary storage cache system (L1-, L2-, and L3-
level caches).  
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Secondary Storage Cache  
 

Disk caching is common in modern systems, particularly in file and database servers.  
The OS is the best source of file access information because it updates the information 
dynamically as it services file access requests. Because the OS executes on the CPU, it is difficult 
to implement access-based control if the cache controller is a special–purpose processor within a 
disk controller.  
 

Cache Pipelining  
 

Cache pipelining is a technique in which memory loads the requested memory contents into a 
small cache composed of SRAM, then immediately begins fetching the next memory contents.  
This creates a two-stage pipeline, where data is read from or written to cache in one stage, and data 
is read or written to memory in the other stage.  
 

Memory System Hierarchical Levels  
 

 
Level 

 

 
1 

(highest level) 
 

 
2 

 
3 

 
4 

(lowest level) 
 

 
Name 

 

 
Registers 

 
Cache 

 

Main 
Memory 

 

Disk 
Storage 

 
 

Typical size 
 

 

< 1 KB 
 

<16 MB 
 

<16 GB 
 

>100 GB 

 

 
Technology 

 

 

Memory with 
multiple ports, 

CMOS 
 

 

On-chip or  
   off-chip 

CMOS SRAM 

 
 

CMOS DRAM 

 

Magnetic 
Disk  

 

Access time 
(ns) 

 

 
0,25-0,5 

 
0,5-25 

 
80-250 

 
5 000 000 

 

Bandwidth 
(MB/s) 

 

 
2*104 - 105 

 
5*103 - 104 

 
103 – 5*103 

 
20 – 150 

 
Managed by 

 
Compiler 

 
Hardware 

 
Operating 

system 

 

Operating 
system / 
operator 

 

 

Backed by 
 

 

Cache 
 

Main 
Memory  

 

Disk 
 

CD or  
   M-tape 
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The efficiency with which memory space is being used at any time is defined as the ratio of the 
memory space occupied by active user programs and data to the total amount of memory space 
available.  
The “wasted” memory space can be attributed to several sources:  
 

1. Empty regions – the blocks of instructions and data occupying memory at any time are 
generally of different length (memory fragmentation);  

2. Inactive regions – data may be transferred to main memory and may subsequently transferred 
back to external memory, without ever being referenced by a processor;  

3. System regions – these regions are occupied by the memory-management software.  
 
 
 

Main Memory System Organization  
 
 
The memory consists of multiple memory modules. The memory module is the main building 
block of the main memory system.  
 

Each memory module is capable of performing one memory access at a time.  
Each memory module contains a subset of the total physical address space.  
Each memory module has two important parameters:  

 

a. Module access time   -   the time required to retrieve a word into the  
           taccm                          memory module output buffer register.  
b. Module cycle time   -     the minimum time between requests  
           tcycm                          directed at the same module.  

 
The memory modules (blocks) are organized into memory banks.  
Each memory bank consists of multiple modules that share the same input and output buses. Each 
memory bank consists of memory address register and a memory data register.  
Memory interleaving is a speed enhancement technique which distributes memory addresses such 
that concurrent accesses to memory modules are possible.  
 

A. In low-order interleaving the modules is organized such that the consecutive memory 
addresses lie in consecutive physical modules.  

 
B. In high-order interleaving (banking) the consecutive addresses lie in the same physical 

module. The high-order address bits select a physical block and the remaining bits select a 
word within that block.  
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Memory Modules  
 

 
                                          …                                                   …                
 
 
                       Bankj+1                                       Bankj  
 
 
 
            Address  
 
 
               High-order bits                                                     Low-order bits  
               Addresses banks                                            Addresses module (block)  
                                                                                                within a bank  
 
Within a memory bank only one memory module is able to begin or complete a memory operation 
during any given bus cycle. The memory bank organization is meaningful only if the memory 
cycle time is greater than the bus cycle time.  
 
 

Address Space  
 
Address space – the set of identifiers, that may be used by a program  
                            to reference information.  
 

                                                                  qadr  
 

Memory address space – the set of physical main memory locations  
                                           in which information items may be stored.  
 

                                                                  qmadr  
 

System address space – The address space that contains memory (qmadr)  
                                         and I/O-spaces (qIOadr).  
 

                                                                   qsadr  
 

Physical (real or direct) addressing space  
 

                                                                  qpadr  
                                                              qsadr > qpadr  
 
Virtual address is an address that corresponds to a location in virtual space and translated by  
address mapping to a physical address. The virtual address space is divided into pages.  
The maximum physical address size can be larger or smaller than the virtual address size.  

 

m-1 
 

m-2 
 

  0  
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If a physical address is large than the virtual address, then it means that a microprocessor system 
could have more physical memory than any one program could access. This could be useful for 
running multiple programs simultaneously.  
If a physical address is smaller than the virtual address, then a program cannot have all of its 
virtual pages in main memory at the same time.  
 
 
 

Basic Addressing Modes  
 

Addressing modes have the ability to significantly reduce the instruction count (t3 = var).  

 
    Mode                   Algorithm                     Principal advantage              Principal  
                                                                                                                        disadvantage  
 
Immediate                Operand                       No memory reference             Limited operand’s  
                                                                                                                                value  
Direct                        EA = A                                 Simple                            Limited address  
                                                                                                                                 space  
Indirect                     EA = (A)                     Large address space                Multiple memory  
                                                                                                                              references  
Register                     EA = ( R )                   No memory reference             Limited address  
                                                                                                                                  space  
Register Indirect      EA = (( R ))                 Large address space               Extra memory  
                                                                                                                                 reference  
Displacement            EA = A+( R )                    Flexibility                         Complexity   
Stack                         EA = [top of stack]      No memory references           Limited applicability  
 

In load-store architecture is dominated immediate and displacement addressing modes.  
 
 

Memory Wall  
 

Memory Bus Speed versus RAM Speed  
 
The memory speed is a function of a memory bus (sometimes of a system bus speed) speed.  
The increase in microprocessor performance places significant demands on the memory system.  
Typical on-chip L2 cache performance degradation is now more than 2× the ideal cache.  
For multiprocessors, inter-cache latencies increase this degradation to 3× or more for 4 processors 
and up. A perfect memory system is one that can supply immediately any datum that the CPU 
request.  
The ideal memory is not practically implementable as the three general factors of memory  
 

capacity,  
speed, and  
cost  

are in direct opposition.  
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Example  

 
   Intel's Microprocessors Memory-bus Speed versus Internal Clock Speed  

 

 
 

           Type /  
 Generation (Gi)  

 
 
 Year  

 
   Data /  
  address  
bus width  
 

 
  Memory  
bus speed  
   (MHz)  

 
   Internal 
clock speed 
    (MHz)  

 
 
         Comments  

      8088 / G1   1979        8/20    4,77-8       4,77-8   

      8086 / G1   1978      16/20       4,77-8       4,77-8   

  80286 / G2   1982      16/24        6-20        6-20   

  80386DX / G3   1985      32/32      16-33      16-33   

  80386SX / G3   1988     16/32      16-33      16-33  L1 cache  

  80486DX / G4   1989      32/32      25-50      25-50   

  80486SX / G4   1989      32/32      25-50      25-50   

  80486DX2 / G4   1992      32/32      25-40      50-80  Clock doubling 

  80486DX4 / G4   1994      32/32      25-40      75-120  Cock tripling  

    Pentium / G5   1993      64/32      60-66      60-200   

Pentium MMX/G5  1997      64/32         66    166-233  Multimedia functions  

 
Pentium Pro / G6  

 
 1995  

 
    64/36  

 
      66  

 
   150-200  

RISC-like instructions 
L2 cache, 10-stage 
pipeline  

 Pentium II / G6   1997      64/36        66     233-300   

 Pentium II / G6   1998      64/36      66/100     300-450   

 Pentium III / G6   1999      64/36       100    450-1200  SMD extension 

 AMD Athlon / G7   1999      64/36        266    500-1670   

  Pentium 4 / G7    2000      64/36        400  1400-  20-stage hyperpipeline  

 
 

The memory wall problem arises because the difference between two competing trends, each of 
which is an exponential function but with a different base grows at an exponential rate.  
 
 
 

Resulting in the gap doubling every 2,1 years.  
 

 
 

 

Processor–Memory Performance Gap is the primary 

obstacle to improved computer system performance.  
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Overcoming Memory Wall  
 
An economical solution is a memory hierarchy organized into several levels, each smaller, faster 
and more expansive per byte than the next.  
The concept of memory hierarchy takes advantage of the principle of locality.  
 

Traditional techniques  
 

� Larger caches, deeper cache structures. We have to improve:  
 

1.  Hit time,  
2.  Miss penalty,  
3.  Miss rate (to increase the memory bandwidth).  

 

� Latency hiding via prefetching;  
� Hardware multithreading.  

 

Future research opportunities  
 

� Reduced intercache scaling effects via affinity scheduling of tasks;  
� Machine learning applied to code prefetching and code pre-positioning;  
� Self-optimizing cooperation between the hardware and software directives.  

 
 
Memory-level parallelism (MLP) is the ability to perform multiple memory transactions at once. 
As for read and write operations at once, or multiple read operations. Risky is to perform multiple 
write operations at once (address conflicts).  
 
 

Classical (one-word wide) Main Memory Organization  
 

CPU

MAIN 
MEMORY

CACHE

INTERFACE

INTERFACE

INTERFACE
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Suppose that 1 clock cycle takes to transfer address or data in memory system. Each access to 
main memory takes 20 clock cycles. One cache memory line contains four main memory words. 
The total transfer time (Ttot) of one cache line content is equal to:  
 

Ttot = Taddress transfer + Tmemory access + Tdata transfer   
 

Ttot = 1 + 4×20 + 4×1 = 85 clock cycles  
 
 
 

The Techniques to Improve Effective Memory Bandwidth  
 

a. Wider and faster connection to memory;  
b. Large on-chip caches;  
c. More efficient on-chip caches;  
d. Dynamic access ordering;  
e. Logic and DRAM integration (IRAM).  

 
 
Though many techniques have been suggested to circumvent the Memory Wall problem, most of 

them provide one time boosts of either bandwidth or latency.  
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 Examples  

Wider Memory Organization (Alpha 21064)  

Ttot = 1 + 2×20 + 2×1 = 43 clock cycles  
 
 

Interleaved Memory Organization (DEC300 model 800)  

Ttot = 1 + 1×20 + 4×1 = 25 clock cycles  
 

MAIN 
MEMORY

INTERFACE

INTERFACE

CPU

INTF INTFINTF INTF INTF

MUX

CACHE (4-way)

INTERFACE

CACHE

CPU

INTERFACE

MAIN 
MEMORY

BANK BANK BANK BANK
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Memory Capacity Planning  
 
The optimization problem for a storage hierarchy concerns costs, and a selection among design 
trade-offs. It is important to achieve a high a hit ratio as possible at memory level M1.  
 
In optimizing the cost-effectiveness of a storage hierarchy design, two approaches have been used:  
 

1. In the simpler approach, only the storage hierarchy itself is optimized and the CPU is 
ignored.  
The figure-of-merit //kvaliteedinäitaja// employed is the product of the mean access time 
and the total cost of the storage system.  

2. In the more complex approach, the storage hierarchy is treated as a component of computer 
system, and the cost and performance of the CPU are included in the study.  

 

1. Access frequency (fi) to memory system level Mi is:  
 

fi = (1-h1) ×××× (1-h2) ×××× … ×××× (1-hi-1) ×××× hi   

∑ =
n

fi
1

1   

f1 >> f2 >> f3 >> … >> fn,   where  
 

   hi – hit rate on memory system level Mi (0 < hi < 1);  

1-hi – miss rate.  
 

2. Effective access time (Teff) in memory system:  
 

Teff = h1 × t1 + (1-h1) × h2 × t2 + (1-h1) × (1-h2) × h3 × t3 + … +  
                                + (1-h1) × (1-h2) ×…× (1-hi-1) × hi × ti,   where  
 

ti – access time in memory system level i.  
 

3. The total cost of a memory hierarchy (Ctot):  
 

Ctot = ∑ci×si,   where  
 

ci - i-level (relative) cost,  

si – i-level size (capacity).  
 

Generally:  
 

s1 < s2 < s3 < … < sn,  
 c1 > c2 > c3 > ... > cn.  
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ASSOCIATIVE MEMORY  
Content Addressable Memory  

 
Associative memories are referred also as:  

 

1. Catalog memory;  
2. Parallel search memory;  
3. Data-addressed memory;  
4. Content-addressable memory or CAM.  

 

• Traditional memories have been organized conventionally as sets of words, each word 
comprising a fixed number of binary digits.  

• Associated with each word is an address, which corresponds in some manner with the physical 
location in memory at which the word value is stored. Traditional memories store data 
spatially.  

• Access to a word in memory requires designation of an address in the form of binary number.  

• In the associative memory (AM) a data word is not obtained by supplying an address that 
specifies the location of that word in memory.  

• An identifying descriptor (A) or key is provided to memory.  

• In the memory is then searched until an exact match is found between the submitted descriptor 
(AS) and search key and a descriptor associated (AA) or key with a data word (DA).  

• The AA descriptor may be part of each data word or the descriptor may be stored separately 
(sometimes AA = DA).  

• A true associative memory, in the sense of completely simultaneous interrogation of all bits in 
all words of a block of memory, requires that each elementary memory cell be furnished with a 
logic operation capability.  

• Many implementations of content addressability can be viewed as hash addressing.  

• Another approach is TRIE memory, which is a kind of hash coding but does not suffer from 
collisions.  

 
Hash coding (key transformation) is a process in which a search key is transformed, through the 
use of a hash function, to an actual address for the associated data.  
A hash function is the mathematical function for turning some kind of data into a small integer, 
that may serve as an index into an array. The values returned by a hash function are called hash 
values. The data is usually converted into the index by taking a modulo.  
 

Key register HF

Key

Hash transformation  
function 

CAM cells
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Age-addressable memory is a special-purpose associative memory which uses the date and time 
when the data was written as a retrieval key.  
 
 
 

CAM Operation  
 
The entire word line in the CAM is w elements wide where the first k bits are used for the tag and 
d bits used for the data.  
The entire row or word can be viewed as a single entity, the key is just compared the first k bits 
within a word, essentially masking off the d data bits.  

 

 
The operation of a CAM is like that of the tag portion of a fully associative cache.  
But unlike CAMs, caches do not use priority encoders since only a single match occurs.  
CAM is not a RAM where a particular address is permanently tied to a specific physical location.  
 
 
 

k bits
d bits 

W = k+d 

Search Key Field
or Tag Area

Data Area  
Associated with corresponding Key  

Layout of single cell in associative memory  



 57 

CAM Architecture Model  
[Data storage capacity is n × d bits]  
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There are four basic operations which CAM performs:  
 

1.  Reads,  
2.  Writes,  
3.  Selection of a line,  
4.  Multiple response resolution.  

 
 

Reads  
 

During a read operation a key is first load into the search tag register and then, if needed, the mask 
register is loaded with whatever is desired. Typically mask register allows all bits of the search key 
to be used to scan the directory, but can be set to only compare certain bit position in the key.  
 
 

Data searching methods  
 

Associative search can determine not only an exact match, i.e., all bits are identical in the 
compared words, but also the degree of similarity in a partial match. For similarity measure CAMs 
use mostly the Hamming distance.  
 

1. Classical or trivial searching  
AS = AA  

2. Complicated searching  
AS > AA,  
AS < AA,  
ASmin < AA < ASmax,  
ASmin = AA,  
ASmax = AA, etc.  

 
 
 Selection  
 

The key is compared to all the tags of the words in the tag area, and when a match occurs, it sets a 
bit in the hit register. This indicates the unmasked bits in the key were the same as their 
corresponding bits for particular tag.  
Once all the comparing is completed and the hit register is stable, the cell in the hit register 
containing a “1” indicates, which line in the data storage area is to be output (line j).  
 
 
 Multiple responses  
 

This possibility exists, the hit register may designate to this. Since several hits may occur, but only 
one line of data can be output at a time, so some method of resolving this conflict must be 
incorporated into the system.  
This is the job of the priority logic (response processor), to choose a single line of data to output 
based on the state of the hit register.  
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 Writes  
 

Writing to a CAM is not simply the converse of reading as it in a traditional RAM.  
Once the decision has been make to write to the CAM, both the tag write register is loaded with 
the intended tag and the data write register is loaded with the data to be linked to the tag.  
There is a question, how to choose the line in the CAM to replace with a new values for tag and 
data, by purging the old values from the CAM. This is known as a replacement strategy and 
includes the policies such as FIFO, LIFO and others.  
 

Data writing methods:  
 

1. By address,  
2. By attribute,  
3. By step,  
4. By sorting.  

 
 
 

CAMs Taxonomy  
 
CAMs are divided into classes, which define how the search is done within the CAM.  
Since the tags are words of a certain bit length, the classifications are:  
 

1. Bit-serial-word-parallel,  
2. Bit-parallel-word-serial,  
3. Fully parallel (all-parallel).  

 
Bit-serial-word parallel  

A search is accomplished by comparing the MSB of each AS tag (key) to the MSB of the AA tag, 
in all words simultaneously. Each bit of every tag is compared sequentially to the key.  
 
 Bit-parallel-word-serial  
It is just opposite of the previous method. The entire key is compared to each tag in succession 
until a match occurs. This is the easiest to envision since it is just a linear search.  
 
 Fully parallel  
In this case, every tag of every word is compared to the entire key simultaneously. This is the 
hardest to implement and offers the highest performance, but is the most costly method.  
 
 

CAM Drawbacks  
 

1.   Functional and design complexity of the associative subsystems;  
2.   High cost for reasonable storage capacity  
3.   Relatively poor storage density compared to conventional memory;  
4.   Slow access time;  

         5.   A lack of software to properly use the associative power of the memory system.  
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Using CAMs  
 

1. In networking (routers, search engines);  
2. For pattern recognition;  
3. For picture processing;  
4. For control functions within a multiprocessor systems;  
5. Paging operations in TLBs;  
6. In ZISC (Zero Instruction Set Computer) devices;  
7. In Dataflow machines, etc.  
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VIRTUAL MEMORY SYSTEM  
 
 
Virtual memory (VM) deals with the main memory size limitations. The size of virtual storage is 
limited by  

• the addressing scheme of the computer system,  

• the amount of auxiliary storage available (not by the actual number of main storage locations).  
Original motivation was to make a small physical memory look large and permit common software 
on a wide product line. Before virtual memory an overlaying //ülekattuvus// was used. Virtual 
memory automates the overlay process. Virtual memory organization principles are similar to the 
cache memory system.  
 

Virtual memory is automatic address translation that provides decoupling program’s name space 
from physical location and protection from interference with name space by other tasks.   
 
 

Virtual Memory Architecture  
 
Memory space in virtual memory is treated as a set of pages (blocks) that may be arbitrarily 
distributed among main memory and swap space.  
 

1. Per process address space (*)  
Each process is given an address space when created and disappears when process dies.  

2. System-wide virtual address (not widespread)  
One shared system-wide address space can persist over system lifetime.  

 

VM Advantages  
 

1. The memory seen by program can be greater than physical memory size:  
a. * All programs can start at address "0" without being remapped by loader or by base  
          register;  
b.   Machine need not have large contiguous address space for program;  
c.   Can leave huge holes in address space with no penalty;  
d. Memory allocation is simple.  

2. Programmer does not have to worry about managing physical address space (overlays)  
and the automatic data transfer process maximize average speed.  
 

Virtual memory main components are:  
 

1. Physical memory divided up into pages;  
2. A swap device that holds pages not resident in physical memory;  
3. Address translation mechanism:  

3.1. Page tables to hold virtual-to-physical address mappings;  
3.2. Translation Lookaside Buffer (TLB).  

4. Management software in the operating system.  
 
 



 62 

Virtual Memory Main Principles  
 
 
The working set //töökogum, -komplekt// is the group of physical memory pages currently 
dedicated to a specific process.  
 

Page placement technique in VM  
Page placement is managed by system software. Page placement consists of:  
 

1.  Page identification;  
2.  Address translation (mapping).  

 

Let V be the set of virtual addresses (logical addresses) generated by a program running on a 
processor and let M be the set of physical addresses allocated to run this program.  
A virtual memory system demands an automatic mechanism to implement the mapping φ(V)  
 

φ:  V→M UUUU Ø,   where φ(v) = m,   if m ∈∈∈∈ M or φ(v) = Ø, if data is missing in M.  
 

The mapping uniquely translates the logical address LA into a physical address PA   [LA→PA],  
if there is a memory hit in M. When there is a memory miss in M, the value returned, signals that 
the referenced item has not been brought into main memory yet.  
A virtual address miss is called page fault.  
 
 Page fault handling:  
 

Page fault is the sequence of events occurring when a program attempts to access data that is in its 
logical address space, but is not currently located in the main memory.  
 
The efficiency of the address translation process affects the performance of the virtual memory.  
 
Virtual memory has an automatic address translation that provides:  
 

1. Decoupling of program's name space from physical location;  
2. Provides access to name space potentially greater in size than physical memory;  
3. Expandability of used name space without reallocation of existing memory;  
4. Protection from interference with name space by other tasks.  

 
 

Memory Management Unit (MMU)  
 
MMU is a hardware component, which is responsible for handling memory accesses requested by 
the CPU. MMU also solves the problem of fragmentation of memory. The main functions of MMU 
are:  
 

1. The translation of virtual addresses to physical addresses;  
2. Memory protection;  
3. Cache system control;  
4. Bus (usually memory bus) arbitration;  
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5. In simpler computer architectures (8-bit systems) bank switching.  
 
There are two control registers in MMU – base register and bound register.  
 

 The base register //baasiregister// specifies memory location starting address.  
 The bound register //piiriregister// specifies size of address space.  
 The content of base and bound registers are changed by OS.  
 

MEM 
CNT 

TLB 

MMU 

CPU 
Main 

Memory Exception 

LA PA

Control Bus

Data Bus 

ADR  Bus

 
Memory Management Unit  

 

• A logical address (LA) is the location of a word relative to the beginning of the program.  

• A logical address consists of a page number and a relative address within page (offset).  

• A physical address (PA) consists of a frame (physical memory page) number and  
a relative address within frame (offset).  

When a problem arises, as for page fault, the MMU signals an exception so the OS can intervene 
and solve the problem.  
 
 The common approaches to the memory mapping are:  
 

1. Pagination (paging);  
2. Segmentation;  
3. Paged segmentation.  

 
The MMU contains a page table (PT). Each page table entry (PTE) gives the physical page number 
corresponding to the virtual one. This is combined with the page offset to give the complete 
physical address. Usually there is one page table per process. Page tables are usually so long that 
they are stored in main memory, and sometimes are paged themselves.  
A PTE may also include additional information about whether the page has been written to, when 
it was last used (for a least recently used replacement algorithm), what kind of processes may read 
and write it, and whether it should be cached.  
 
 Page Table Entry Format:  
 

1. Address;  
2. Control information, which consists of:  
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1. Valid/Present (V/P) bit  
 Set if the page being pointed to is resident in memory;  

2. Modified/Dirty (M/D) bit  
 Set if at least one word in page/segment has been modified;  

3. Reference (A/R) bit  
 Set if page or segment has been referenced;  

4. Protection (PR) bits  
 They are used to restrict accesses.  

 
Usually is used 2-level page table format (Page Directory (Catalog) + Page Table(s)).  

 
 
                                                                                           In MMU              In Main Memory  
 
 

Memory Management Techniques  
 

Technique  
 

 

Description  
 

 

Comment  
 

 
Fixed  

Partitioning  
  

Main memory is divided into a 
number of partitions at system 
generation time. A process may be 
loaded into a partition equal or 
greater size.  

 
Simple to implement.  
Little OS overhead.  

Inefficient use of memory.  
 

 
Dynamic  

Partitioning  

 

Partitions are created dynamically. 
Each process is loaded into a 
partition of exactly the same size 
as that process.  

 
Inefficient use of processor.  

(additional overhead)  

 
Simple  

  Paging*  

Main memory is divided into a 
number of equal-size frames (blocks 
or pages). Each process is divided 
into a number of equal-size pages 
of the same length.  

 

 
Simple  

Segmentation*  

Each process is divided into a 
number of segments. A process is 
loaded by loading all of its segments 
into dynamic partitions that need 
not be contiguous.  

 
Improved memory 

utilization.  

 

Virtual-memory  
Paging  

As with a simple paging, except that 
that it is not necessary to load all of 
the pages of a process.  

Large virtual address space. 
Overhead of complex 
memory management.  

 
Virtual-memory  

Segmentation  
 

As with a simple segmentation, 
except that it is not necessary to 
load all of segments of a process.  

Large virtual address space. 
Overhead of complex 
memory management.  

 

* - Simple paging and simple segmentation are not used by themselves.  
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When segmentation is used with paging, a virtual address has three components:  
               A segment index (SI), a page index (PI) and a displacement (D).  
In this case every memory address is generated by a program goes through a two stage  
translation process:  
 

Virtual address → Linear address → Physical address  
 
 
 

Paging versus Segmentation  
 

 

 
 

 

Paging  
 

Segmentation  

 
Words per address  

 

 
One (fig. b*)  

 

Two (fig, a*)  
(segment & logical address)  

 

 
Programmer visible?  

 

Invisible to application 
programmer  

 

 
May be visible to application 

programmer  
 

 
 

Replacing a block  
 

 
Trivial  

(all blocks are the same size)  

 

Hard  
(must find contiguous, variable-size, 

unused portion of main memory)  
 

 

Memory use 
inefficiency  

 

Internal fragmentation  
(unused portion of page)  

 

External fragmentation  
(unused pieces of main memory)  

 

 
 

Efficient disk traffic  
 

 

Yes  
(adjust page size to balance 

access time and transfer time)  
 

 

Not always  
(small segments may transfer just  

a few bytes)  

* see “Address Translation Styles in Virtual Memory”  
 
 

Small Page Size Features:  
 

o The large amount of pages in main memory;  
o Less amount of internal fragmentation;  
o More pages required per process;  

o More pages per process  ⇒  larger page tables;  
o Large page tables’  ⇒  large portion of page table is in secondary (slower) memory.  
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Address Translation Styles in Virtual Memory  
 
 

 
 
 

Program Execution in Virtual Memory  
 
1.  OS brings into main memory some pieces of the program (resident set).  
     Resident set – a portion of process that is in main memory.  
2.  An interrupt is generated when a data (address) is needed that is not in main memory.  
3.  OS places the process in a Blocking State.  
4.  New data is brought into main memory from external (secondary) memory (disk).  
     Another process is dispatched to run while the disk I/O takes place.  
5.  An interrupt is issued when disk I/O complete, it causes the OS to place the affected process  
      in the Ready State.  
5. Each process has its own page table. The entire page table may take up too much main  

memory.  
6. Page tables are also stored in virtual memory. When process is running, part of its page  

table is maintained in main memory.  
 
 

Page i base

Offset 

Offset 

To Main Memory To Main Memory 

Segment Lower Bound

Segment Upper Bound

Range 
Error 

Page 

Page Physical Address

Concatenate

Address Translation 
for a Segment (a)

Address Translation  
for a Page (b) 

+

Physical Address

Page Table

Segment Base Address
Logical 
Address

Range Check
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Example  
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Accelerating Address Translation  
 
The first hardware cache used in a computer system did not cache the contents of main memory 
but rather translations between virtual memory addresses and physical addresses.  
This cache is known as Translation Lookaside Buffer (TLB) or Translation Buffer.  
 

TLB:   Transfer Lookaside Buffer or  
Transfer Lookahead Buffer or  
Address Cache Memory (ACM) or  
Address Translation Cache (ATC}.  

 

The TLB is used in the memory control unit for fast physical address generation, to hold recently 
used page or segment table entries. The TLB is used in the memory control unit for fast physical 
address generation.  
The TLB is a high-speed look-up table which stores the most recently referenced page entries.  
The first step of the translation is to use the virtual page number as a key to search through the 
TLB for a match. In case of a match (a hit) in the TLB, the page frame number is retrieved from 
the matched page entry.  
In case the match cannot be found (a miss) in the TLB, a pointer is used to identify one of the page 
tables where the desired page frame number can be retrieved.  
Classical TLB is fully associative.  
In a TLB entry the tag portion holds portions of the virtual memory address and the data portion 
holds a physical page frame number (address), control bits (valid (V), use (A), dirty (M)) and 
protection information.  

Page address

V A M

Page address Offset 

Offset Logical Address  

Physical Address  

Physical Page  
A ddress

TLB

Page  
Tables

D irectory
(Tag)

O R

miss

hit

to M M Uto M M U
( page fault)
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To change the physical page frame number or protection of an entry in the page table, the OS 
must make sure the old entry is not in the TLB. The dirty bit (M) means that the 
corresponding page is dirty, not that the address translation in the TLB is dirty.  
The OS resets these bits by changing the value in the page table and then invalidating the 
corresponding TLB entry.  

 
Newer processor architectures are supporting TLBs that allow each entry to be independently 
configured to map variable-size superpages.  
The most serious problems associated with general utilization of superpages are – the requirement 
that superpages be used only to map regions of physical memory that are appropriately sized, 
aligned and contiguous.  
Using superpages is restricted they are used for mapping a small number of large non-paged 
segments, such as frame buffer and the non-pageable portions of the OS kernel.  
 
 

Virtual Memory is quite similar to Cache Memory  
 

 

 
 

 

CACHE MEMORY 
 

VIRTUAL MEMORY 

 

Implemented with 
 

 

Cache SRAM 
 

 

Main Memory DRAM 

 

Baseline access via 
 

 

Demand fetching 
 

Demand paging 

 

Misses to go 
 

 

Main Memory 
 

Swap device (disk) 

 

Size of transferred data set 
 

 

Block (4-64 bytes) 
 

Page (4kB-64KB) 

 

Mapping stored in 
 

 

Tags 
 

Page tables 

 
The high order bits of the virtual address are used to access the TLB and the low order bits are 
used as index into cache memory.  
 
 

Page Replacement Policies in Virtual Memory  
 
A replacement policy is needed to determine which page is swapped out when memory space is 
needed. Replacement policy is supported by OS software. Because the swapping cost is great, it is 
desirable to use more complex algorithms to make selection.  
There are six policies that are frequently used:  
 

1. LRU - least recently used;  
2. FIFO - first in first out;  
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3. LIFO - last in first out;  
4. Circular FIFO;  
5. Random;  
6. Belady`s optimal replacement policy  
The theoretically optimal replacement algorithm) is an algorithm that works as follows: 
when a page needs to be swapped in, the OS swaps out the page whose next use will occur 
farthest in the future.  

 
 

Write Strategy in Virtual Memory  
Write-back (with page dirty bit)  

 

Policy assumes that the compiler is unaware of the memory system. If the compiler has a large 
enough context to work with, it may be able to do a better job of managing memory.  
It may be able to indicate that a phase of execution has just completed, a segment (page) of 
memory will no longer needed, even though it would not be replaced by LRU until much later.  
But the compiler may also be able to initiate prefetch of a page or segment far enough in advance 
to avoid much of the paging penalty.  
 
Summary  
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CACHE MEMORY SYSTEM  
 
 
 Thesis  
 
A:   Modern CPUs have one concern – keeping the processor pipelines filled with  
       instructions and data.  
B:   This is becoming an increasingly difficult task because:  

The speed of CPU performance doubles every 18 – 24 month,  
The speed of the DRAM chips, that constitutes main memory, increases by only a few  
(5 - 7) percent each year.  

C:   The high-speed cache memory that acts as a buffer between main memory and CPU is an  
        increasingly significant factor in overall performance.  
D:   Cache consistency //vahemälu konsistentsus, ~kooskõlalisus//  
 

Cache consistency – in presence of a cache, reads and writes behave no differently than if the 
cache were not there.  
The cache consistency reflects the fact that a datum must have one value and only one value.  
If two requests to the same datum of the same time return different values, then the correctness of 
the memory system is in question. Cache consistency aspects are:  
 

1. Consistency with backing store  
2.   Consistency with itself  
3.   Consistency with other clients  

 

The principle of memory coherence indicates that the memory system  
behaves rationally.  
Memory consistency defines rational behavior, the consistency model indicates how long 
and in what way the system is allowed to behave irrationally with respect to a given set of 
reference.  

 
Memory consistency behaves like a superset of memory coherence.  

 
E:   The property of locality which justifies the success of cache memory has two aspects:  
 

1. Locality in time (temporal locality) – a hit that occurs on a word already in cache  
                                                                      that has been previously accessed.  

 

Temporal locality for code  

  Low ⇒ no loops and no reuse of instructions;  

  High ⇒ tight loops with lots of reuse.  
 

2. Locality in space (spatial locality) – a hit that occurs on a word already in cache  
                                                                   that has not been previously accessed.  
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Spatial locality for code  

  Low ⇒ lots of jumps to far away places;  

  High ⇒ no branches or jumps at all.  
 

F:   The performance speedup of a cache (Scache):  
 

cache
S

)1(1

1

)1(

m

ccm

m

T

T
h

ThTh

T

−×−
=

×+×−
= ,   where  

Tm – main memory access time;  
Tc – cache memory access time;  
  h – hit ratio,  

 

a.  Tc = Tm  ⇒   Scache = 1.  

b.  Tc << Tm   ⇒   Scache = 
h−1

1
,  

h↑ ⇒ Scache↑  

h↓ ⇒ Scache↓ 
 
 
 

Cache Memory Fundamentals  
 

Cache types  
 

1. Data cache  
2. Instruction cache & trace cache //jäljevahemälu//  
3. Address cache  

 
 Cache memory organization  
 

1. Direct mapped cache (SRAM)  
2. Set-associative cache (SRAM)  
3. Fully associative cache (CAM)  

 
 Main functional units  
 

1.  Data memory (fast memory)  
2.  Tag memory (very fast memory)  
3.  Status memory (very fast memory)  
4.  Block (line) fetch circuits  
5.  Control circuits  
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Direct Mapped Cache  

 
Since there are more memory frames than lines in cache, an individual line cannot be uniquely and 
permanently dedicated to a particular frame. Therefore, each line includes a tag that identifies 
which particular frame of main memory is currently occupying that line of cache.  

o Address length (a):                                                    a = {(m+n)+w} bits;  

o Number of addressable units in main memory:      2a
 words or bytes;  

o Block size (line size):                                                  2w
 words or bytes; 

o Number of blocks in main memory:                         2a / 2w = 2n+m
 ;  

o Number of blocks (lines, rows) in cache (r):             r = 2n
 ;  

 
The mapping function gives the correspondence between main memory frames and cache memory 
lines. Each line is shared between several main memory frames.  
Direct mapping cache maps each block of main memory into one possible cache line.  
The mapping can be expressed as:  
 

l = f mod r,   where  
l – cache line number,  
f – main memory block(frame) number.  

 
The tags contain the address information required to identify whether a word (data block) in the 
cache line corresponds to the requested word (data block). The tag uses the upper portion of the 
address.  

There is no two blocks that map into the same line numbers have the same tag numbers.  
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Set Associative Cache  

DataTag

CMP
&

VA

w1 w2 w3 w4

Address Byte

DataTag

CMP
&

VA

w1 w2 w4

Tag (m+1) Index (n-1)

& &

1

N = 2

Data out
to CPU

M 2M 1

w3

Set

Line

Fully Associative Cache  
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Cache Address Formats  

 
 

Cache Entry Basic Structure  

Tag Data Status 

Cache Metadata 

(Cache Tag) 
Cache Data (Cache Block) 

One Cache Entry (Cache Line) 
 

A fully-associative cache has two distinct advantages over set-associative cache:  
1. Conflict-miss minimization;  
2. Global replacement.  

 

There is an inverse relationship between the number of conflict-misses in a cache and the 
associativity of the cache. A fully-associative cache minimizes conflict-misses by maximizing 
associativity.  
 
Global replacement allows a fully-associative cache to choose the best possible victim every time, 
limited only by intelligence of the replacement algorithm.  
Accessing a fully-associative cache is impractical; as it requires a tag comparison with every tag-
store entry (prohibitively increases the access latency and power consumption.  
 
Dirty Data – when data is modified within cache but not modified in main memory, then  
                      the data in the cache is called “dirty data”.  

NB!  The dirty bit is needed only in write-back caches.  
 

Stale Data – when data is modified within main memory but not modified in the cache,  
                      the data in the cache is called “stale data”.  
 
 

Data Transfer in Cache System  
 

a. In asynchronous cache  
  The oldest and slowest cache type,  
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  Data transfers are not tied to the system clock.  
b. In synchronous cache  

  Data transfers are tied to the memory bus clock.  
 

c. In pipelined burst cache  
  Cache has special circuitry that allows the four data transfers occur in a burst.  
  The second transfer begins before that the first one is finished.  
 

 
Cache type 

 

 

Transfer formula  
(w1, w2, w3, w4)  

 

        Asynchronous               3 - 2 - 2 - 2  
        Synchronous               3 - 2 - 2 - 2  
        Pipelined burst               3 - 1 - 1 - 1  

 
 

Cacheable and Non-Cacheable Data  
 
Data that can be cached (written into cache) is a Cacheable Data, whereas data that cannot be 
cached is a Non-cacheable Data.  
Usually non-cacheable data is dynamic information that changes regularly or for each user request 
and serves no purpose if it were cached (as for web pages that return the results of a search, 
because their contents are unique almost all the time).  
 
 

Cache Memory Main Parameters  
 
1.   Cache size – is the total capacity of the cache  
2. Block (line) size – is the data size that is both:  
3.   Associativity – partition cache blocks into s equivalence classes (s - the number of sets)  
        (Set size)        of a n block frames each.  

Set - storage for lines with a particular index.  
 

Typical values for cache associativity:  
 

1.  Direct mapped –                s=1,  
2.  S-way set-associative –      s=2,4,8,16,  
3.  Fully-associative –            s= all blocks.  

 
Higher associativity means lower miss rates, smaller associativity means lower cost, faster 

access (hit) time, but higher miss rate. 
 
Higher levels of associativity (s ≥ 32) requires hardware overhead that slows down the cache, it is 
often the case that low levels of associativity with a larger capacity provide better performance 
overall.  
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Cache Memory System's Historical Development 
 
 

 

CPU CPU 

SBUS 
SBUS 

IU IU 

EU EU 

MMU MMU

MEM
MEM

MEM CM

MPS with a 
off-chip cache 

Advanced MPS 
without a cache 

A B

C D

IU 

EU 

CPU 

L1

ICM IU 

EU 

CPU 

ICM

MMU

MEM

SBUS 

L1 L1

MMU

MEM CM

L2 
IC/DC

SBUS 

MPS with on-chip 
instruction cache 

MPS with on-chip L1
 instruction cache 

and off-chip L2 IC/ DC 
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E

CPU 

IU 

EU 

MMU

MMU

ICM

DCM MEMMEM

SBUS 

Dual-bus cache system 
with off-chip 

IC and DC caches  

L1

L1

F 

MMU

IU 

CPU 

EU 

SBUS 

MEM

DC

IC

CM 

L1

L1

L2

MPS with on-chip L1 IC and DC caches 
and off-chip L2 IC/DC cache 

H

Advanced MPS with 
on-chip multilevel ( L1, L2, (L3)) 

instruction (IC) and data (DC) caches 
and off-chip multilevel 

separated or united instruction/data caches 
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Cache Memory Miss Types  
 
Cache miss can occur during read and write operations.  
 

1. Compulsory (cold start miss, the first reference miss) miss  
[misses in infinite size of cache] It occurs during the first access to a block that is not in the cache 
yet.  
 

2. Capacity miss  
[misses due to size of cache] The cache cannot contain all the data blocks needed during execution 
of a program. They will occur due to data blocks being discarded and later retrieved.  
 

3. Conflict (collision miss, interference miss) miss  
[misses due to associative and size of cache] Multiple memory locations mapped to the same cache 
location. Fully-associative placement avoids conflict misses.  
 

Miss Rate 

Cache Capacity 

Direct mapped

Fully associativ e 

Conflict misses 

Capacity misses 

Compulsory misses

 
Reducing Cache Misses  

 

1. Large block size (reduces compulsory and capacity misses);  
2. Large cache size (reduces capacity and conflict misses);  
3. Higher associativity (reduces conflict misses)  

 
 

Improving Cache Performance  
 

• Multi-ported cache is a cache implementation where the cache provides for more than one 
Read or Write port for providing high bandwidth. Because of these multiple ports it results 
in servicing multiple requests per cycle.  

• Multi-banked cache is a cache implementation where the cache is implemented as a 
banked structure for providing high bandwidth by providing the illusion of multiple ports. 
It results in servicing multiple requests per cycle if there are no bank conflicts.  
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• Prefetching is a technique that predicts soon-to-be used instructions or data and loads them 
into the cache before they are accessed.  
Prefetch is a technique used to avoid or reduce the time the processor is waiting for data to 
arrive in the registers. A commonly used method is sequential prefetching where it is 
predicted that data or instructions immediately following those currently accessed will be 
needed in the near future and are prefetched. Prefetching, especially aggressive prefetcing 
may reduce performance.  

 
Non-blocking cache is a cache that allows the processor to make references to the cache while the 
cache is handling an earlier miss. Non-blocking cache is commonly used to hide the cache miss 
latency by using out-of-order processors. The processor continues to operate until one of the 
following events takes place:  
 

1. Two cache misses are outstanding and a third load/store instruction appears;  
2. A subsequent instruction requires data from of the instructions that caused  

a cache miss.  
 
 
 

Cache Memory Fundamental Questions  
 

1. Block placement (where can a block be placed in the cache?);  
2.    Block identification (how is a block found in the cache?);  
3.    Block replacement2 (which block should be replaced on a miss?);  
4.    Cache type (what type of information is stored in the cache?).  
5.    Write strategy (what happens on a write?).  

 
 
 

Write–through and Write-back Strategy  
 
When to propagate new value to lower memory level - Write-through: immediately,  
Write-back: when block is replaced.  
Unlike instruction fetches and data loads, where reducing latency is the prime goal, the prime goal 
for writes that hit in the cache is reducing the bandwidth requirements.  
 

The write traffic into L2-level cache primarily depends on whether the L1-level cache is write-
through (store-through) or write-back (store-in or copy-back).  

 
 
 
 
 
 

                                                 
2 Not needed for direct mapped caches.  
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Write-through and Write-back Caches Advantages and Disadvantages  

 

Feature  
 

 

Write-through  
 

 

Write-back  
 

 

Traffic  
 

 

More  
 

 

Less 
 

 

Additional Buffer  
 

 

Write-buffer needed  
 

 

Dirty victim buffer needed  
 

 

Ability to handle Burst 
Writes  

 

 

Write buffer can overflow  
 

 

Usually OK, unless miss with 
dirty victims  

 

 

Cycles required per write  
 

 

1  
 

 

1 to 2 (include probe)  
 

 
What should be done on a write operation that does not hit in the cache (write miss)?  

There are two common options on a write miss:  
 

1. Write allocation policy - the cache line to which the write miss occurred is brought into 
the cache and also the block in main memory is updated.  
Method decreases read misses, but it requires additional bus bandwidth.  

2. Write no-allocation policy - the write is propagated to main memory without changing the 
contents of the cache.  
Method generates potentially more read misses, but it needs less bus bandwidth.  

 

Write-back caches generally use write allocate policy and write-through caches often use no-write 
allocate policy.  
 
 

Avoiding Write-Through Write Stalls  
 
Write stall – if CPU has to wait for write to complete during write through.  
To reduce write stalls, write buffer is used, allowing CPU to proceed while memory is being 
updated.  

 

Write buffer holds data awaiting write-through to lower level memory. The bursts of writes are 
used in write buffer. For eliminating RAW hazard it must be drained write buffer before next read, 
or check write buffer:  
 

On reads, CPU checks cache and write buffer.  
On writes, CPU stalls for full write buffer.  
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In write-through cache it helps with store misses. In write-back cache it helps with dirty misses. It 
allows to do read first. For this a write dirty block is sent to the write buffer. The new data block is 
read from memory to cache and then the content of write buffer is sent to memory.  
 
 
 

Cache Miss Rate Reduction  
 
Cache hit time – time to deliver a line in the cache to the processor (includes time to determine  

          thit            whether the line is in the cache)  
 
 
 A.  Victim Cache  
Victim cache is a small, fully-associative cache inserted between cache memory and its refill path. 
It reduces need to fetch blocks from higher-level memory by keeping recent victims, blocks 
discarded from cache memory. Victim cache reduces conflict misses.  
 
 
 B.  Pseudo-associative Cache  
For getting the miss rate of set-associative caches and the hit speed of direct mapped is realized in 
pseudo-associative cache. When a hit occurs, the cache works like the direct-mapped cache. On a 
miss, before going to the next lower level of the memory hierarchy, another cache entry is checked 
to see if it matches there.  
 
 

Hit Ratio versus Cache Size, Cache Type, Associativity and Block Size  
 

30 Percent Rule  
 

 

 

 

Doubling the cache size increases hit rate by about 30 percent.  
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Misses per 1000 Instructions for Instruction, Data and Unified Caches  
 

Cache Size 
 

 

Instruction cache 
 

 

Data cache 
 

Unified cache 

16 KB 3,82 40,9 51,0 

64 KB 0,61 36,9 39,4 

128 KB 0,30 35,3 36,2 
256 KB 0,02 32,6 32,9 

 

      Associativity (↑↑↑↑)                    Block size (↑↑↑↑)                           Capacity (↑↑↑↑)  
 

Decreases conflict misses (+)        Decreases compulsory misses (+)       Decreases capacity  
                                                                                                                              misses (+)  
                                                       Increases or decreases  
                                                       capacity misses (±)  
                                                       Increases conflict misses (-)     
Increases thit (-)                              No effect on thit (~)                                      Increases thit (-)  
 
 
 

Block size, Performance Point and Pollution Point  
 
For any cache, as the block size is increased, the effects of bandwidth contention will eventually 
overwhelm any reduction in miss rate.  
 

Performance point – is the block size at which performance is highest.  
Pollution point – is the block size at which the miss rate is lowest.  
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In region A of the figure, larger blocks improve the miss rate, which provides a performance gain  
that overcomes the performance drop due to increased channel contention, causing overall 
performance to rise.  
 

In region B, the miss ratio continues to drop with larger blocks, but performance also deteriorates 
due to increased contention. The performance point resides at the boundary between regions A and 
B.  
 

In region C, pollution causes the miss rate to begin to increase with larger blocks, causing a 
sharper drop in performance than in region B. The pollution point resides at the boundary between 
regions B and C.  
 
 
 

Virtual Indexing and Virtual Tagging  
 
The existence of different physical and virtual addresses raises the question of whether a particular 
cache is virtually or physically indexed, and whether it is virtually or physically tagged.  
 
 Virtual Indexing  
 
Virtual indexing has lower latency, because the physical address is available only after the TLB 
has performed its translation. Most L1-level caches are virtually indexed.  
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CPU CPU
Main 

Memory 
Main 

Memory 
Cache Cache

MMU MMU

AB AB

DB DB

Virtual memory Virtual memoryPhysical memory Physical memory 

Offset Offset 

Translation base Translation base

Logical Cache Physical Cache
 

 
 
Virtually indexed and/or tagged caches keep aliased //rööpnimesus// virtual addresses coherent by 
guaranteeing that only one of them will be in the cache at any given time.  
It is guaranteed by OS that no virtual aliases are simultaneously resident in the cache.  
 

Whenever a new entry is added to a virtually indexed cache, the processor searches for any virtual 
aliases already resident and evicts them first. This special handling happens only during a cache 
miss. No special work is necessary during a cache hit.  
 
 Virtual Tagging  
 
A physically tagged cache does not need to keep virtual tags. It is useful to distinguish the  
two functions of tags in an associative cache: they are used to determine which way of the entry set 
to select, and they are used to determine if the cache hit or missed.  
 

If the TLB translation is slower than the L1-level cache access, then a virtually tagged cache will 
be faster than a physically tagged cache. It is the reason why some L1-level caches are virtually 
tagged. 
 

The advantage of virtual tags is that, for associative caches, they allow the tag match to proceed 
before the virtual to physical translation is done.  
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Cache Memory Performance  
 
 
The access latency in cache memories is not fixed and depends on the delay and frequency of 

cache misses.  Average cache memory access time (effective latency) (tavg) is equal to:  
 

tavg = thit + mR × tmiss   
tmiss = tmiss penalty;  

mR – miss rate  
 

Miss penalty – time to replace a block in the higher level (closer to CPU) with a block from  
                          the lower level plus time to deliver this block’s word to the processor.  
Average memory access time (tavg) can be calculated in absolute time or in clock cycles. 
 
 

Impact of Cache Memory on the CPU Performance  
 
Modified CPU performance equation to account for CPU being stalled  
 

tCPU = (CPU clock cycles + Memory stall cycles) × tCLK ,   where  
 

Memory stall cycles = Number of misses × tmiss penalty   or  
 

Memory stall cycles = IC × Memory references per instruction × mR × tmiss penalty  
 
Cache can have enormous impact on performance, particularly for CPUs with low CPI and 

high clock rate (impact to CPU time!).  
 
 

L2-Level Cache  
 

L2-level cache contents are always superset of L1-level cache contents. 

• We want large caches to reduce frequency of more costly misses.  

• Large caches are too slow for processor.  
 

Average access time in L2 cache (tavgL2):  
 

tavgL2 = tcacheL1 + missL1 × tcacheL2 + missL1,2 × tmemory  
 

• The speed of L1-level cache dictates the CPU clock rate.  

• The speed of L2-level cache will affect execution time.  
 

Local miss rate - miss rate measured relative to the references arriving at a particular level of cache.  
Global miss rate – overall miss rate of the cache complex.  
Multilevel inclusion – describes a multiple level cache in which any data found in a higher level  
                                      will also be find in the lower level.  
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Cache Coherency Mechanisms  
 
Snooping – the process where individual caches monitor address bus for accesses to memory  

  location that they have cached.  
Snarfing – the process where individual caches monitor the address and data buses in an attempt  

 update its own copy of a memory location, when it is modified in main memory.  
Cache Memory versus Virtual Memory  

 

Parameter 
 

 

First-level cache 
 

Virtual memory 

 

Block (page) size 
 

 
16-128 bytes 

 
4096-65536 bytes 

 

Hit time 
 

 
1-3 clock cycles 

 
50-150 clock cycles 

 

Miss penalty 
 

 
8-150 clock cycles 

 
106-107 clock cycles 

 

Access time 
 

 
6-130 clock cycles 

 
8×105-8×106 clock cycles 

 

Transfer time 
 

 
2-20 clock cycles 

 
2×105-2×106 clock cycles 

 

Miss rate 
 

 
0,1-10 % 

 

 
10-5-10-3 % 

 

Address mapping  
 

25-45 bits physical addresses to 14-
20 bits cache address  

 
32-64 bits virtual address to 25-

45 bits physical address  

 
Memory Hierarchy Parameters Effects on Performance  

 

Parameter variation  
 

 

Advantage  
 

 

Disadvantage  
 

 

Large main memory or cache size  
 

 

Fewer capacity misses 
 

 

Longer access time  
 

 

Large pages in main memory or 
longer cache lines  

 

 

 
Fewer compulsory misses  

 

 

 
Greater miss penalty  

 
 

Greater cache memory 
associativity  

 

 

Fewer conflict misses  
 

 

Longer access time  
 

 

More sophisticated data 
replacement policy  

 

 

Fewer conflict misses  
 

 

Longer decision time,  
more hardware  

 
 

Write-through policy in cache 
memory  

 

No write-back penalty,  
easier write-miss handling  

 

Wasted memory bandwidth,  
longer access time  
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 Summary  
 

Cache Optimization Techniques  
 

 
 

Technique 
 

 

Miss 
penalty 

 

 

Miss 
rate 

 

Hit 
time 

 

Hardware 
complexity 

 
 

Comment 

 

Multilevel 
caches 

 
+ 
 

 
 

  
2 
 

Costly HW; Harder 

if block size L1≅L2; 
Widely used 

Giving priority 
to read misses 

over writes 

 
+ 

   
1 

Trivial for 
uniprocessor; 
Widely used 

 

Victim caches 
 

+ 
   

1 
AMD’s Athlon has 

eight entries 
 

Larger block 
size 

 

― 
 

+ 
  

0 
Trivial; 

Pentium 4's L2-
cache uses 128 bytes 

 

Larger 
cache size 

  
+ 

 
― 

 
1 

Widely used, 
especially for  

L2-caches 

Higher 
associativity 

  

+ 
 

― 
 

1 
 

Widely used 

Pseudoasso-
ciative caches 

  

+ 
  

2 
Used in L2-cache of 

MIPS R10000 

Non-blocking 
caches 

 

+ 
   

3 
Used with all  

out-of-order CPUs 

Compiler 
techniques to 
reduce cache 

misses 

  

 
+ 

  

 
0 

Software is a 
challenge; 

Some computers 
have compiler 

option 

Hardware 
prefetching of 
instructions  

and data 

 
+ 

 
+ 

  

2 instructions, 
3 data words 

Many prefetch 
instructions; 

UltraSPARC III 
prefetches data 

Compiler-
controlled 

prefetching 

 
+ 
 

 
+ 
 

  
3 

Needs non-blocking 
caches; several 

processors support it 

Small and 
simple caches 

  

― 
 

+ 
 

0 
Trivial; 

Widely used 

Pipelined cache 
access 

   

+ 
 

1 
 

Widely used 

Trace cache   + 3 In Pentium 4 
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Summary  

 
 

Cache and Main Memory Interaction  

 

The number of access cycles  
 

 
 
 
 

Access type  
 

 

Cache  
Read  

 

 

Cache  
Write  

 

 

Main Memory  
Read  

 

 

Main Memory  
Write  

 

 

Read hit  
 

 

1  
 

 

0  
 

 

0  
 

 

0  
 

 
Read miss  

 

 
1  
 

 

n  
(line size in words)  

 

 

n  
(line size in words)  

 
0  
 

 

Write hit  
 

 

0  
 

 

1  
 

 

0  
 

 

1  
 

 
Write miss  

 

 

1  
(tag read)  

 

 

(0); [1]  
(no cache update)  
[cache update ]  

 

 
0  
 

 
1  
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INPUT-OUTPUT SYSTEM  
 

Input/Output Bottleneck  
 
The input/output bottleneck is a discrepancy between the large speed of processing elements in the 
system and the smaller speed of input/output elements of the system.  
The main problem is that I/O transfers potentially have side-effects, such as initiating a DMA 
transfer, clearing status bits, or removing data from a receive queue. This forces I/O transfers to be 
done:  
 

1. In strict program order;  
2. Non-speculatively;  
3. Exactly once.  

 
The overall system performance is frequently limited by I/O devices.  
The slowdown main reasons:  
 

a.  Monitoring of the I/O process consumes processor cycles;  
b.  If I/O supplies input data, then the processing must wait until data are ready.  
 
 

Input/Output Units  
 
Input/Output units are the computing system's means of communication with the world outside 
of primary (system) memory.  
 Features:  
 

1.  The I/O devices vary tremendously in form and functions.  
2.  The I/O devices vary enormously in the speeds at which they operate.  
3.  The I/O devices are the main system resources that must be shared  

among multiple users.  
 
 Functions:  
 

1.  Information transferring.  
2.  Sharing the I/O resources.  
3.  Handling and recovering errors in I/O operations.  

 

I/O Device Types  
 

1. Data presentation devices at the user interface  
     (for processor-user communications);  
2. Data transport devices at the network interface  

(for processor-processor communications);  
3. Data storage devices at the storage interface  

(for processor-storage communications).  
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The I/O Devices Organization Ways  
 

1. Program-controlled;  
 

2. Interrupt-driven;  
           (incl. I/O processors)  
 

3. DMA-managed.  
                       (DMA controller managers single block transfers)  

 
DMA CHANNEL  

 

                        Int     CPU                         
I/O Device                                   RAM   

 

    I/O Device          CPU               RAM   
 

                   Int             Int  
 

                              DMA CH           

Y

N
READY?

Read status 
from I/O 
device 

I/O operation

POLLING

Special 
HW support 

I/O device is passive 

Wait or 
Gadfly loop 

CPU
I/O

Device 

Int

Data bus 

INTERRUPTS 

I/O device is active
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I/O Performance Measurement  
 
I/O system performance common metrics are:  

1.  Throughput (I/O bandwidth) ⇒ useful for file servicing and transaction processing ;  
2. Response time (latency).  

Response time = Controller time + Wait time + 
Bandwidth

bytesofNumber __
 + CPU time – Overlapping time  

 
Little`s Law  

The mean number of tasks in a stable queuing system (over some time interval) is equal to the 

mean arrival rate (λ) of new tasks to that system, multiplied by their mean time spent in that 

system (T), i.e. mean response time:  

N = λ × T  

NB!  Arrival rate (λ) and the response time (T) must use the same time unit.  

Arrival rate (λ) is measured in messages per second.  

 
Queue – the area where the tasks accumulate, waiting to be serviced.  

Server – the device performing the requested service.  
 

Throughput - the number of tasks completed by the server in unit time.  
In order to get the highest throughput, the server should never be idle and the queue should 
never be empty.  

Response time - begins when task is placed in the queue and ends when it is completed by the  
server.  

In order to minimize the response time the queue should be empty and the server will be idle.  
 

TSys – response time (average time/task in the system);  
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TQueue – average time per task in the queue;  

TServer – average time to service a task;  
 

TSys = TQueue + TServer  
 

 
 
 

I/O System Architecture  
 
 
There are two types of communication that are used during I/O operation with input-output 
devices:  
 

1. Control flow;  
2. Data flow.  

 

A. Control flow  
 

Control flow can be broken down into commands which flow from the processor to the I/O 
device (outbound control flow) and back (inbound control flow).  
 

B.  Hierarchical data paths  
 

Hierarchical data paths organization divides bandwidth going down the MPS hierarchy. 
Often buses are at each level of MIPS’s hierarchy.  
 

 C.  Bus switching methods in data paths:  
 

I. Pended //rippuvedastusega siin// or circuit-switch buses  
Bus is held until request is completed;  
“+“   simple protocol;  
“–“    latency of devices affects bus utilization.  

 

II. Pipelined buses //konveieredastusega siin//  
Multiple requests outstanding;  
Fixed timing of reply;  
Slave must response if it is not ready to reply.  
“+”   simpler to implement than packet switched;  
“–“    may waste bandwidth.  

 

III. Split transaction or packet-switched //jaos- e pakkedastusega siin// buses  
Bus is released after request is initiated;  
Others can use bus until reply comes back;  
“+”   better bus utilization;  
“–“    complex bus control.  
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 D.  I/O software functions  
 

1. Device independence;  
2. Buffering;  
3. Error handling;  
4. Synchronous and asynchronous data transfers.  

 

E. I/O software layers  
 

Control layers between the user program and I/O devices hardware are:  
 
 

OS kernel => I/O subsystem => Device driver => Device controller => Device  
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Interfaces and Buses  
 
Interface – a physical /conceptual/ structure for channeling and facilitating communications  
                    (a boundary between systems or devices).  
 

 Taxonomy  
 

1. By topology:  
  Magistral (Bus),  
  Radial (Star),  
  Daisy chain,  
  Mixed.  
 2. By transmission mode:  
  Serial,  
  Parallel,  
  Mixed.  

3. By transmission direction:  
  Simplex,  
  Half-duplex,  
  Duplex.  
 4. By synchronization:  
  Asynchronous,  
  Isochronous,  

 Synchronous.  
 

 
   5. By functionality:  

System interface,  
I/O interface,  
Peripheral interface,  
Local and Distributed network.  
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Buses  
 

 Bus ⇒  a shared communication link between subsystems.  

 Bus System ⇒ a collection of wires and connections for data transactions among  
                                     processors, memory modules and peripheral devices.  
 
The bus is used for only one transaction at a time between a source (master) and a destination 
(slave). In case of multiple requests the bus arbitration logic allocates (de-allocates) the bus 
servicing the request one at a time. For this reason the digital bus is called contention bus or a 
time-sharing bus.  
 
Bus width refers to the data and address bus widths.  
System performance improves with a wider data bus adding more address lines improves 
addressing capacity.  
 

Bus Types  
 

• System bus or internal bus represents any bus within a microprocessor system. System 
bus connects system components together.  

• External bus is used to interface with the devices outside a microprocessor system.  

• Processor-memory bus connects processor and main memory (no direct I/O interface).  

• I/O bus connects I/O devices (no direct processor-memory interface).  

• Backplane bus – processor, memory and I/O devices are connected to same bus.  
It is an industry standard, but the processor-memory performance is compromised.  

 
Bus System Design Goals  

 

1. High performance;  
2. Standardization;  
3. Low cost  

Processor-memory bus emphasizes performance, then cost.  
I/O bus and backplane bus emphasize standardization.  

 
 

Bus System Main Questions  
 

1. Bus width and multiplexing (are bus lines shared or separate);  
2. Clocking (is bus clocked or not: asynchronous, synchronous);  
3. Switching (how and when is bus control acquired and released, atomic or split  

                                        transactions);  
4. Arbitration (who gets the bus next: daisy-chain, centralized or distributed).  
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Data Transactions via a Bus-system  
 

 Simple bus  
 

1. Only one bus transaction at a time is in progress,  
2. An arbiter decides who gets the bus,  
3. Unified data and address bus.  

 
Address cycle  

Master device asserts the request line it drives the address bus when the request  
is granted (RQ → BG).  

Data cycle  
The master and selected slave devices communicate for one or more cycles.  

 

 

 Pipelined bus  

 
1. Increases bus bandwidth by pipelining address and data cycle,  
2. Separate address and data buses,  
3. New address cycle can start immediately after the previous address cycle.  

 

 Split-phase bus  
 

1. Bus bandwidth increased by allowing out-of-order completion of requests,  
2. Low-latency device can respond sooner,  

An A0 A1 A2 A3 
t 

Dn D0 D1 

A4 Address: 

Data: 

D0 ready 

Td

Address:

Data:

A0 A1

D0 D1 D2

A2
t

One transaction

Td - latency time 

Td = 0 
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3. Requires completely separate arbitration of address bus and data bus,  
4. Devices recognize the appropriate data cycle by appropriate bus transaction tags,  
5. Bus transaction tag size limits the number of outstanding transactions.  

t
Data:

Address: An A0 A1 A2

Dn D1 D0 D3

A4 A5

D1 ready

Td1=0

A3

D2

Td2

Td0

D0 ready

Td0

 
 

Bus Options  
 

 
Option  

 

 
High Performance 

 

 
Low Cost  

 

Bus Width  Separate Aaddress and Data lines  Multiplex Address and Data lines  

Data Width Wider is faster  Narrower is cheaper  

Transfer Size  Multiple words (less bus overhead)  Single-word transfer  

Protocol  Pipelined  Serial  

Bus Masters  Multiple (requires bus arbitration)  Single master  

Clocking  Synchronous  Asynchronous  

 

Beyond buses ⇒ Interconnection networks  
 
 
 

Bus Arbiter  
 
Arbitration – the process of assigning control of the data bus to a requester.  
                        The requester is a master, and the receiving end is called a slave.  
Arbiter – a functional unit that accepts bus requests (RQ) from the requester unit  
                 and grants control of the data bus (BG) to one requester at a time.  
Bus timer – measures the time each data transfer takes on the data bus and terminates  
                     the data bus cycle if a transfer takes too long.  
 

Priority System in Arbiter  
 

a.   Fixed priorty arbiter  
b. Variable priority arbiter  
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Interrupts and Exceptions  
 
The terms interrupt //katkestus// and exception //eriolek// is used, not in a consistent fashion.  

 
There is an operating system service routine, called interrupt handler (Interrupt Service Routine 
(ISR)), to process each possible interrupt. Each interrupt handler is a separate program stored in a 
separate part of primary memory.  

Processor Interrupt Sequence  
            Interrupt  

                   t0  
 
 
 
 
 
 
              2 clocks              2–200 clocks         12-200 clocks                    3 clocks  

                                                                                                    t1  
                                                                                       Interrupt service program (ISR)  

    
   
                                      Response time or latency (tR)  

t1 = t0 + tR  
tR → min tR  

 
 

Recognize 
interrupt 

 
Wait current 
instruction 
to complete 

Store 
internal 

information 
to external 

stack 

 

Get 
interrupt 
vector 
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Response deadline – the maximum time that a interrupt handler (ISR) can take between  

when a request is issued and when the device must be serviced.  
 
Interrupt density – the maximum number of the interrupts which can be activated at the  
                                 same time.  
 

    ti – the time taken by the interrupt service routine;  

    tpi – the time (interval) between interrupts;  

   ti/tpi – determines whether a processor is fast enough to handle all interrupts well, i.e.,  
 

(ti < tpi).  
 
 Interrupt Density Inequality  
 

t1/tp1 + t2/tp2 + … + ti/tpi < 1,  

∑
i

pi

i

t

t
 < 1  

 
 
 

Interrupt Priority Systems  
 
 
 

 A. Relative Priority System  

 
 
The priority levels s (s = 4) are:  
                                   IP1 (the lowest) < IP2 < IP3 <IP4 (the highest),   
                                    Interrupted process i in processor - PrI   

 
 

          IP2            IP1             IP1           IP4            IP3  
 
 
 
 
 

 
                                             IP2 handling  
 
 

 

Pri  
Start

IP2  
 
IP2  

 
IP2  

End  

IP2  

Start  
IP3  
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 B. Absolute Priority System  
 
 

          IP2            IP1             IP1           IP4             IP3            IP3  
 
 
 
 
 
 

                                   IP2 handling  
                                                                                 IP2 handling is stopped  
                                                                                 IP4 handling                        Start  
                                                                                                                                IP3  
 
 
 C. Mixed Priority System  
 
a. Test the set of interrupt priority level groups – PG  
                                PG = {PG1, PG2, …, PGk} [absolute priorities].  
 

b. Test the set of priority levels in the group PGj  
                                 PGj = {IP1j, IP2j, …, IPsj} [relative priorities].  
 
 

 Hardware interrupts  
 

1. Normal interrupts (IRQ);  
2. Non-maskable interrupts (NMI);  
3. Fast interrupts (FIRQ)  

 
 
 

Exception (Interrupt) Types  
 
The exceptions may be user requested or coerced //pealesunnitud//. Coerced exceptions are caused 
by some hardware event that is not under the control of the user program.  
Coerced exceptions are harder to implement because they are not predictable.  
 

If the program's execution always stops after the interrupt, then it is a terminating event.  
If the program's execution continues after the interrupt, it is a resuming event.  
 

It is easier to implement exceptions that terminate execution, since the processor need not be able 
to restart execution of the same program after handling the exception.  
 
 

 

Pri  
Start  
IP2  

 

IP2  
 

IP2  
Start  
IP4  

End  

IP4  



 102

Exception type  
Synchronous or 
asynchronous  

User request 
or coerced  

Within or 
between 

instructions  

Resume or 
terminate  

I/O device request  Asynchronous  Coerced  Between  Resume  

Invoke operating system  Synchronous  User request  Between  Resume  

Tracing instruction 
execution  

Synchronous  User request  Between  Resume  

Breakpoint  Synchronous  User request  Between  Resume  

Arithmetic overflow or 
underflow  

Synchronous  Coerced  Within  Resume  

Page fault or misaligned 
memory access  

Synchronous  Coerced  Within  Resume  

Memory protection 
violation  

Synchronous  Coerced  Within  Resume  

Hardware malfunction  Asynchronous  Coerced  Within  Terminate  

Power failure  Asynchronous  Coerced  Within  Terminate  

 
Synchronous, coerced exceptions occurring within instructions that can be 

resumed are the most difficult to implement.  
 
 
 

Identifying Interrupt Source  
 
The process of identifying the source of the interrupt and locating the service routine associated is 
called interrupt vectoring.  
 
 

Vectoring Hardware Interrupts  
 
 Non-vectored interrupts  
 

A fixed address is assigned in memory to the hardware interrupt request line.  
If there are multiple interrupt lines, a different fixed address could be assigned. Whenever interrupt 
occurs the CPU goes to that address and begins executing code from there.  
If there are multiple devices, there could to be a generic interrupt handler that would query the 
devices in priority order to determine the source of interrupt.  
 
 Vectored interrupts  
 

If the hardware devices are smart enough, then the CPU responds to each interrupt request with an 
interrupt acknowledge sequence.  
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During the acknowledge cycle the CPU indicates that it is responding to an interrupt request at a 
particular priority level, and then waits for the interrupting device to identify itself by placing its 
device number on the system bus.  
 

Upon receiving this device number, the CPU uses it to index into an interrupt vector table in 
memory. The entries in the interrupt vector table are generally not the interrupt service routines 
themselves, but the starting address of the service routine.  
The interrupted device number is offset into interrupt vector table.  
 
 Auto-vectored interrupts  
 
If “dumb” devices are used in the system, then a variation of the vectored interrupt scheme can be 
used – auto-vectoring.  
In a system with auto-vectored interrupts, a device that is not capable of providing an interrupt 
vector number via the system bus, simply requests a given priority level interrupt, while activating 
another signal to trigger the auto-vectoring process.  
The CPU internally generates a device number based on the interrupt priority level that was 
requested.  
 

Vectored and auto-vectored interrupts can be used in the same system concurrently.  
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CPU 

Int 

SBUS 

PD1 PD 2 PD 3

A. Software polling 

B. Hardware polling 

CPU 
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Direct Memory Access (DMA)  
 

DMA – a direct rapid link between a peripheral and a computer’s main memory,  
which avoids accessing routines for each item of data read.  

Link  –  a communications path or channel between two components or devices.  
 
 

DMA Transfer Structure  

DMAC – Direct Memory Access Controller  
 
If processor whishes to read or write a block of I/O data, it issues a command to the DMA unit. 
After that the processor continues with other work. The DMA unit transfers the entire block of 
data, one word at a time, directly to or from memory, without going through the processor.  
When the transfer is complete, the DMA unit sends an interrupt signal to the processor.  
The processor is involved only at the beginning and end of the transfer.  

CPU 

INT

INTA 

SBUS

Main memory 
(Q-total)

DMA Controller 

RGS 

SYNC 

RGAe 

RGAc 

+1 

CMP 

Control 
unit 

RGD

Control Data 

PD 

Data 
buffer 

 (Q-buff) 

Q-total = Q-page x n 

Internal bus 

/Physical or virtual address/ 
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The DMA unit can interrupt the processor’s instruction cycle only in certain points.  
 

 
 

 
 
Sometimes this requires performing atomic updates to the shared critical sections (regions).  

Critical section – it is the part of the program where shared data is accessed.  
 

Some processors also support disabling DMA operations by using locked bus cycles.  
The processor could execute lock instruction to disable external bus grants (BG).  
When critical region updates have been completed, the unlock instruction is used  
to allow bus grants.  
 
 
 

Data Transfer Organization in DMA  
 

The main DMA transfer modes are:  
 

1. Register mode (A);  
2. Descriptor mode (B).  

 
When the DMA runs in register mode, the DMA controller uses the values contained in the DMA 
channel’s registers.  
In the description mode, the DMA controller looks in memory for its configuration values.  
 

DMA’s breakpoint is not an interrupt; the processor does not save a context and do 

some thing else.  
The processor pauses for one bus cycle.  

 

Instruction 
Decode 

Operand 
Fetch 

Instruction 
Execution 

Store 
Result 

Interrupt 
Breakpoint 

Process 
Interrupt 

DMA 
Breakpoints 

  

Instruction 
Fetch 

TIME 

Instruction Cycle 
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A. In a register-based DMA, processor programs DMA control registers to initiate transfer.  
Register-based DMA provides DMA controller performance, because registers don’t need to 
keep reloading from descriptors in memory. Register-based DMA consist of two sub-
modes:  

 

1. Autobuffer mode (autobuffer DMA);  
2. Stop mode.  

 

In autobuffer mode, when one transfer block completes, the control registers automatically 
reloaded to their original setup values and the same DMA process restarts, with zero 
overhead. Autobuffer DMA especially suits performance-sensitive applications.  
Stop mode works identically to autobuffer DMA, except registers don’t reload after DMA 
completes the entire block transfer. DMA transfer takes place only once.  

 

B. The descriptor contains all of the same parameters normally programmed into the DMA 
control register set. Descriptors allow the chaining together multiple DMA sequences.  

In descriptor-based DMA operations it can be programmed a DMA channel to automatically 
set up and start another DMA transfer after current sequence completes.  
The descriptor-based mode provides the most flexibility in managing a system’s DMA 
transfers.  

 
 
 

Problems with DMA Channel  
 
1.   Writing data from data buffer to main memory.  
2. The OS removes some of the pages from main memory or relocates them.  
3.  DMA and caches - a coherence problem for DMA.  

a. Input problem  
b. Output problem (exists only in write-back caches only)  

 
    Solutions:  

a.  Route all DMA I/O accesses to cache;  
b.  Disallow caching of I/O data;  
c.  Use hardware cache coherence mechanisms. A HW at cache invalidates or  

                    updates data as DMA operation is done (expensive!).  
 
 
 

Virtual DMA  
 
The virtual DMA allows use virtual addresses that are mapped to physical addresses during the 
DMA operation. Virtual DMA can specify large cross-page data transfers.  
The DMA controller does address translation operations internally. For these operations the DMA 
controller contains a small translation buffer, which content is initialized by OS, when it requires 
an I/O transfer.  
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Connection DMA Channel to the System  
 
The main task is to: balance system’s hardware and software. The DMA logic can be organized in a 
system in two ways:  
 

1. Each I/O device has its own interface with DMA capability (fig. A);  
2. DMA controller can be separate from one or more devices for which it performs  

 block transfers. This separate DMA controller is called channel (fig. B).  
 

 Channel Types  
 

1.   If a channel can do block transfers for several devices, but only one at a time,  
      then it is a selector channel;  
2.   If it can control several block transfers at once, it is a multiplexer channel.  
3. Channels can be made more complex and capable.  
     In the limit, the channel becomes a special purpose I/O processor (IOP), which can fetch  
     operations from memory and execute them in sequence.  
 

A.  

 
B.  
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DMA-channel Connection Schemes  
 

1. Traditional connection, one united data channel.  
 

CPU 

DMA PD

I/O channel 

A

C

D

System-mapped DMA Channel 

SBUS 

Main 
Memory 

DMA Channel 

 

 
 Connection variations:  
 

1. Burst mode transfer,  
2. Shared mode transfer (cycle stealing)  

 
 

2. Two independent data channels (typical in the high-performance MP systems).  
 
 

 
 
 

CPU 

DMA PD

BUF

Int 

SBUS SBUS or MBUS

I/O Channel 

I/O Channel 

Separate DMA and Main Memory Channels  

Main 
Memory 

The Main Memory is 
a Dual-port or 

 Multi-Port Memory 

DMA Channel 
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Input-output Operations and Cached Data Consistency  
 

CPU CPU CPU 

Cache Cache Cache 

Main 
Memory 

Main 
Memory 

Main 
Memory 

PD PD PD 

Xc Xc Xc

X X X

Y Y Y

Yc Yc Yc

Out In 

123 abc

abc 

abc 

abcabc

def

def def

defdef

456

Out 

Out 

Cache and Main Memory 

COHERENT 

Cache and Main Memory 

INCOHERENT 

Cache and Main Memory 

INCOHERENT 

In 

In 

A. B. C. 

 
The goal is to prevent the stale-data problem.  
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INPUT-OUTPUT SYSTEM CONTROLLERS 
(PROCESSORS)  

 
 
 

I/O Controllers Types  
 

1. Transparent (harmonizing electrical parameters);  
2. Unifying timing (harmonizing timing parameters)  
3. Unifying transfer protocols;  
4. Data handling (all previous features + temporal data buffering).  

 
 

I/O Controller Main Functions  
 

1. Establishing a communication between I/O controller and memory;  
2. Establishing connection between I/O interface and I/O controller;  
3. Data exchange with I/O device;  
4. Notifying the CPU of completion of I/O operation.  

 
 

I/O Interface Main Functions  
 

1. Recognition addresses;  
2. Resolving the characteristics differences.  

 
 

Evolution Stages  
 
1. I/O circuits on SSICs or MSICs (non-unified)*;  
 
2. Special ICs for controlling I/O operations  
 (TIM, SIO; PIO, DMA, etc.);  
 
3. Special (dedicated) purpose I/O controllers  
 (display controller, FDD controller, HDD controller);  
 
4. Universal programmable I/O controllers  
 Simple processing unit and PIO on chip  
 For low-speed I/O devices,  
 Master/Slave (M/S)-system capabilities.  
 (Intel 8041 (1979) was the first programmed I/O device)  
 
5. I/O processors (IOP) or peripheral processing unit (PPU)  
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I/O processors are also called peripheral processors or sometimes  
front-end processors (FEP)  
(graphics PR - 82786, DMA PR - 82259, I/O RISC-PR - i960)  

 
IOP Main Functions:  

 

1. Performing a group operations;  
2. Handling of data to be input/output;  
3. Data editing, debugging, validating, correction.  

 

Data transfer between the IOP and the central processor can  
be organized:  
 

1. Through the disk system;  
2. Through the shared memory.  

 

In disk coupled system the IOP stores data on the disk unit, which in turn  
are processed by the central processor.  

 
IOP Main Features:  

 

1. Internal DMA channel(s);  
2. Advanced Master/Slave-system capabilities.  

 
6. Transputers  

High-performance pipelined parallel I/O and network processors.  
(IMS T222, T800, T9000).  

 
 
 



 114

 

CPU
Main

memory

PD

PD

S-bus

S-busS-bus

DMA

IOC

IOC

IOC PD

IOPR IOC PD

DMA 

MPS 
Core

S-bus / I/O-bus

PD

I/O controller
 (IOC) 

Controller  - a module or a specific device which operates automatically  
                   to regulate a controlled variable or system.    
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CPU IOP

IOP Programs
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Communication Area
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I/O Done 
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CPU-IOP Interface Model  

 
The communication area in main memory is used for passing information between CPU and IOP 
in the form of messages.  
Typically CPU has three I/O-oriented instructions (each of which will be a CW) to handle the IOP:  
 

TEST I/O,   START I/O,   STOP I/O.  
 

The instruction set of an IOP consists of data transfer instructions (READ, WRITE), address 
manipulation instructions and IOP program control instructions.  
 
 

Coprocessors  
 
Accelerator – is a separate architectural substructure that is architected using a different set  
                         of objectives than the base processor, where these objectives are derived  
                         from the needs of a special class of applications.  
 

The accelerator is tuned to provide higher performance at lower cost, or at lower power consumption.  
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Coprocessor – a secondary processor that is used to speedup operations by taking over  
                          a specific part of the main processor’s work.  
 
 

The First Generation Coprocessors  
 

CISC micros with loose-coupled FP-processors  
(80286 + 80287; 80386 + 80387; 68020 + 68881; 68030 + 68882)  

1. CPU fetch instruction and data,  
2. Fetched information is sent to the coprocessor,  
3. Microcoded FP operations consume several tens of instruction cycles.  

 
The Second Generation Coprocessors  

 
RISC micros with tight-coupled FPUs.  

(MIPS R2000; R3000; R6000; SPARC, HP-PA RISC)  
 

1. Separate CPU and FPU chips (the lack of die space),  
2. Off-chip SRAMs are used as caches,  
3. FPU is hardwired,  
4. The CPU and FPU are watching the instructions (on the data bus) in parallel and each 

does their own part of the work separately.  
 

The Third Generation Coprocessors  
 

RISC or post-RISC micros with integrated (CPU + FPU + MMU + Cache) on one chip.  
(Pentium; 68040; 68060; Super SPARC, M10000; Alpha)  

 
1. Tight-coupled coprocessors watch the instruction stream,  
2. Multiple-issue instructions (heavily pipelined coprocessor chip).  

 
 
 

Graphics Processor**  
 

Graphics – the creation and manipulation of picture images in the computer.  
 
 Typical Graphics Operations:  
 

1. Pix-bit operations;  
2. Transferring pixels linear addresses into (x-y) – coordinates;  
3. Clipping;  
4. Masking bit planes;  
5. Special graphic functions, as for:  

 

� Rendering polygons;  
Rendering is the process of producing the pixels of an image from  
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higher-level description of its components.  
� Translating vertices into different coordinate systems;  
� Geometric calculations;  
� Texture mapping  

 Texel ⇒ texture pixel.  
� Programmable shadowing to determine the final surface  

properties of an object or image.  
 

Universal Microprocessors Drawbacks:  
 

1. Universal CPU executes graphics operations very slowly;  
2. Universal CPU has limited number of internal registers  
3. Universal CPU’s standard interfaces are not fitted for graphics data  

                transmission.  
 
 

Graphics Controller (GC)  
 

Features:  
 

1. Bit-bit operations;  
2. Graphics manipulations;  
3. Graphics controller (GCNT) chip integrates display control and graphics 

processing units;  
4. Information transferring path:  

 

CPU < = > GCNT < = > Display Unit  
Drawbacks:  
 

1. Fixed number of graphics instructions;  
2. CPU is burdened;  
3. Many external IC chips.  

 
 

Graphics Processor (GP)  
 
Graphics processor (GP) or graphics engine is a secondary processor (coprocessor) used to 
speed up the display of graphics.  
 

Features:  
 

1. Pix-bit operations;  
2. Universal software;  
3. GP is the universal device;  
4. Universal information transferring path:  

 

CPU <···> GP < = > Display Unit  
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Specific features:  
 

a. Microprogrammed control;  
b. Different text displaying modes;  
c. Window overlapping;  
d. Generating high quality moving objects;  
e. Effective resolution is 1024×2048 or more pixels;  
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Graphic Processor Units (GPU) have become an essential part of every computer system 
available today.  
GPU has been evolving faster than the CPU, at least doubling performance every six months.  
GPUs are stream processors that can operate in parallel by running a single kernel on many records 
in a stream at once.  
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Memory Bandwidth and Computational Performance between the CPU and GPU  
 

 

 
 

 

CPU  
 

 

GPU  
 

 

Memory Bandwidth  
 

 

6,4 GB/s  
 

 

35,2 GB/s *  
 

 

Peak Computational  
Performance  

 

 
6 GFLOPS **  

 

 
48 GFLOPS ***  

 

*       Comparable to the CPU L2 cache bandwidth  
**     3,2 GHz Pentium 4 (theoretically)  
***   GeForce FX6800 (equivalent to a 24 GHz Pentium 4)  

 
 

3D Images Processing in GPU  
 
GPUs can implement many parallel algorithms directly using graphics hardware.  
Most real-time graphics systems assume that everything is made of triangles, any more complex 
shapes, as for curved surface patches are formed from triangles.  
A 3D application uses the CPU to generate geometryto send to the GPU for processing, as a 
collection of vertices.  
 

Vertex is a point in space defined by the three coordinates x, y and z..  
 

A vertex description consists of attributes that define its position in 3D space (usually relatively).  
 
Pixel shader program allow graphics engine to process spectacular effects.  
There are two forms of shaders – vertex shader and pixel shader.  
 
Vertex processor (vertex shader) affects only vertexes, which are less relevant to overall 
performance than the pixel shader.  
The vertex shader program processes and alters the attributes of the vertex, on a vertex-by-vertex 
basis, before they passed to the next step in the rendering process, by the vertex processing 
hardware.  
The vertex shader is used to transform the attributes of vertices such as color, texture, position and 
direction from the original color space to the display space.  
Vertex processor allows the original objects to be reshaped in any manner.  
The output of a vertex shader, along with texture maps, goes to an interpolation stage.  
 
Pixel processor (pixel shader) is devoted exclusively to pixel shader programs. Pixel shaders do 
calculations regarding pixels. They are used for all sorts of graphical effects.  
 
As vertex geometry and pixel shader code structures are functionally similar, but have dedicated 
rolls, and then it is possible to create the unified shaders.  
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Texture mapping units (TMU) work in conjunction with vertex and pixel shaders. TMUs job is to 
apply texture operations to pixels.  
 
The process of rasterization takes the geometry processed by the vertex processor and converts it 
into screen pixels to be processed by the pixel shader //pikslivarjusti// or pixel fragment hardware 
(fragment processor.  
The rasterization is the conversation of geometry into screen pixel fragments, generated by 
walking over the geometry lists and analyzing them to see where they lie on the screen.  
Each pixel can be treated independently from all other pixels.  
The actual color of each pixel can be taken directly from the lighting calculations, but for added 
realism, images called textures are often draped over the geometry to give the illusion of detail.  
GPUs store these textures in high-speed memory (texture buffer).  
Rasterization units (ROP) are responsible for writing pixel data to memory.  
 
Processed pixel fragments are stored in frame buffer. The content of frame buffer is converted into 
binary representation and directed to the monitor unit.  
The Frame Buffer Controller (FBCNT) interfaces to the physical memory used to hold the actual 
pixel values displayed on the display unit screen.  
The Frame Buffer Memory is often used to store graphics commands, textures and other attributes 
associated with each pixel.  
 

Graphics Pipeline  
 
The GPUs uses a hardwired implementation of the graphics pipeline. Within a graphic processor, 
all pipeline stages are working in parallel.  
 

Pipeline is a term used to describe graphics engine architecture. 
 
There are different pipelines within a graphics processor. Today the term “pipeline” does not 
longer describe accurately the newer graphics processor architecture. The newer graphics 
processors have a fragmented structure – pixel processors are no longer attached to single TMUs.  
 

Vertex 
Buffer 

Vertex 
Processor 

Rasterizer
Fragment 
Processor 

Frame 
Buffer 

Texture 
Buffer 

Graphics Pipeline Model 
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Whereas CPUs are optimized for low latency, GPUs are optimized for high throughput.  
 
 
 GPUs are characterized by:  
 

1. GPUs are highly parallel;  
2. GPUs have more than 24 processors;  
3. GPUs are highly threaded;  

 
 
 

Example  
 
There are various stages, which are all work in parallel, in the typical pipeline of a GPU:  
 

1. Bus Interface (front-end);  
2. Vertex Processing;  
3. Clipping;  
4. Triangle Setup and Rasterization;  
5. Occlusion Culling;  
6. Parameter Interpolation;  
7. Pixel Shader and Texturing;  
8. Pixel Engine;  
9. Frame Buffer Controller (FBCNT).  
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Front-end Bus Interface  

Vertex Processing  

Clipping 

Triangle Setup 
Rasterization 

Occlusion Culling  

Parameter Interpolation  

Texture 
Pixel 

Shader 

Pixel Engine 

Frame 
Buffer 
CNT 

2D Image to Display Unit   

3D Image 
Peripheral Bus 

(AGP) 

Graphics Pipeline  

Process commands 

Transform vertices to screen 2D space position.  
A programmable vertex shader enables the application  
to perform custom transformations for effects such as  

wrapping or deformation of a shape.   

Delete unseen pixels in the 2D screen view  

Verteces are collected and converted into triangles.  
The triangles are filled with pixels known as fragments.  

Delete hidden (occuluded) pixels  

The values for each pixel that were rasterized  
are computed, based on color, texture, etc.  

Stage adds textures and final colors to the fragments.  
A fragment shadder enbles the application to combine  
a piel`s attributes (color, depth and position on screen)  

with textures in a user-defined way.  

Mathematically combines the final fragment color,  
its coverage and degree of transparency with existing data  

stored at the associated 2D location in the frame buffer  
to producefinal color for the pixel to be stored  

at that position. Output in a depth value (Z)  for the pixel.  
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Transputer**  
 

TRANSistor + comPUTER ⇒  TRANSPUTER  

 
Transputers Main Features  

 
1. The Transputer architecture was introduced by INMOS in 1985. It is single chip 

microcomputer architecture, optimized for parallel use in MIMD configurations.  
2. As controller, the Transputer include CPU, memory and I/O in one package.  
3. The Transputer has a high degree of functional integration. External support requirements 

are minimal.  
4. The Transputer’s on–chip RAM memory may be allocated for cache, data or instructions.  

On-chip RAM provides single cycle access, while external memory is a minimal of three 
cycle access.  

5. A Transputer external memory interface is von Neumann, using a 32-bit wide address and 
data paths. No virtual memory features is included. The memory addresses space basis on 
linear address space.  

6. Neither memory management unit nor special cache is provided in the Transputer 
architecture.  

7. The Transputer is a stack machine. This provides for very fast task context switch for 
interrupt and task switching.  

8. A Transputer has a number of simple operating system functions built into the hardware.  
A microcoded scheduler maintains time sharing between processes running on the  
hardware).  

9. Instructions are decoded and issued to Transputers on-chip FP coprocessor (FPU) by 
hardware in CPU. Calculations of the operand addresses and loading the operands into the 
FPU are done by hardware in the CPU.  

10. The Transputer features high speed interconnects by means of full duplex asynchronous 
serial communications. The four serial links (20 Mbit/s) support bidirectional asynchronous 
point-to-point concurrent communications.  

11. The Transputer has two 32-bit timers. The high priority process timer is incremented every 
microsecond. The low priority timer is incremented every 64 microseconds. Timers are 
used for process scheduling.  

12. The Transputer can boot from a ROM or from one of the serial links.  
13. No JTAG support is included.  
14. All Transputer’s instructions are 1-byte in size. The subset of 31 single byte instructions is 

used about 80% of the time. An on-chip instructions queue handles 4 byte-sized instruction 
fetched simultaneously from memory over the 32-bit bus.  

15. The instruction format is a 4-bit operation code, followed by a 4-bit data value.  
16. Instruction OPR (Operate-general way to extend instruction set) is used to define additional 

16 secondary zero-operand instructions.  
17. The CPU of the Transputer has three registers, organized as a stack. Similarly, the FPU has 

a three register stack.  
18. The CPU includes a workspace pointer to local variable memory, an instruction pointer 

(program counter), and an operand register.  
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19. The Occam language (a trade mark of the INMOS Group Companies) implements a simple 
syntax for parallel process, and for communication between processors. The architecture of 
the Transputer is defined by reference to Occam. Multiple processes can be implemented 
on one Transputer, or on multiple Transputers, the communication method at the software 
level is the same.  

20. The Occam language was developed to program concurrent, distributed systems.  
21. Occam enables a system to be described as a collection of concurrent processes which 

communicate with each other and with peripheral devices through channels.  
22. Concurrent processes do not communicate via shared variables, and the Occam is a suitable 

language for programming systems where there is no memory shared between processors 
in the system.  

23. Concurrent programs can be expressed with channels, inputs, and outputs combined in 
parallel and alternative constructs.  

24. Each Occam channel provides a communication path between two concurrent processes. 
Communication is synchronized and takes place when both the inputting and outputting 
processes are ready.  

25. Data to be output is then copied from the outputting process to the inputting process, and 
both processes continue. Data is sent over one of the two wires forming the link.  
A transmitted byte is framed by service bits.  

26. The Transputer does have an assembly language, but its use discouraged.  
27. A process can be active or inactive:  
 

a. An active process can be executing or awaiting execution;  
b. An inactive process may be waiting for I/O resources (ready to input, ready to 

output), or waiting for a particular time to execute.  
 

28. Interrupts or exceptions are termed events in the Transputer.  
29. The most powerful Transputer was/is T9000 (1991) [200 MIPS or 25 MFLOPS/50 MHz].  

T9000`s hardware supports the virtual link mechanism. It makes possible to use one  
physical link to conduct exchanges between any numbers of process pairs taking place in  
different Transputers.  

30. The Transputers are used for image processing, pattern recognition, artificial intelligence, 
systems simulation, supercomputers, and Transputer networks.  

 
 
 
The modern nearest equivalent to the Transputer like technology is the HyperTransport 

processor (2001) interconnection fabric designed by AMD.  
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MICROPROCESSOR SYSTEM'S PERFORMANCE  
 
 
The CPU time is the time the CPU is computing, not including the time waiting for I/O or running 
other programs. The CPU time can be divided into the CPU time spent in the program (user CPU 
time), and the CPU time spent in the operating system performing tasks requested by the program 
(system CPU time).  
The CPU performance refers to user CPU time, while the system performance refers to elapsed time 
on an unloaded system. System's performance is limited by the slowest part of the path between 
CPU and I/O devices. The system's performance can be limited by the speed of:  
 

1.  The CPU,  
2.  The cache memory system,  
3.  The main memory and I/O bus,  
4.  The I/O controller (I/O channel),  
5.  The I/O device,  
6.  The speed of the I/O software,  
7.  The efficiency of the used software.  

 

If the system is not balanced, the high performance of some components may be lost 

due to the low performance of one link in the chain!  
 
 
 

CPU Performance  
 

The CPU performance is determined by several factors as for:  
 

1.  Instruction cache miss cycles - DIC,  
2.  Data cache miss cycles - DDC,  
3.  Bad branch prediction penalty cycles - DBR,  
4.  Scheduling unit stall cycles - DSU,  
5.  Loss of potential instructions from fetch inefficiency - LFH  
      It is mainly caused by instruction cache misses and branch instruction disturbings  
      in the control flow.  
      In multiple-issue processors the instruction buffer is not filled or partly filled with  

                  instructions.  
 

The instructions per cycle (IPC) is related to the size of the issued instruction block (SIB)  
and utilization percentage (UT) //rakendatuse määr// by:  
 

IPC=SIB × UT,   where  
UT=100% ─ (%DIC+%DDC+%DBR+%DSU+%LFH)  

 

All percentages are relative to the total number of cycles. These percentages change dynamically, but 
should not vary widely.  
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The average UT is approximately 64% (where DIC~2,1%, DDC~1,8%, DBR~8,6%, DSU~5,3%,  
and LFH~18,6%).  
 
 

 
 
 
 

Overall System Performance  
 
 

Texe = tclk × IC × CPI + TMem + TI/O,   where  
Texe – the total execution time  

 
 

Improving System Performance  
 

1. Improve the clock rate (tclk ↓↓↓↓):  
 

o Faster technology  
o Pipelining  

 

2. Reducing the total number of instructions executed (IC ↓↓↓↓).  
 

3. Increase the parallelism (CPI ↓↓↓↓ or IPC ↑↑↑↑):  
 

o Superscalar architecture  
o VLW architecture  
o Multiple processors  
o Speculative execution  
o Out-of-order execution  

 
But there are the bottlenecks – the memory delay (TMem) and input-output system delay (TI/O).  
 
 

Overall System Speedup  
 
The overall system speedup (Ssys) due to enhancements in CPU speed (SCPU), memory speed 
(SMem) and I/O speed (SI/O) can be expressed as:  
 

The CPU's performance is not the same as the  

SYSTEM'S PERFORMANCE!  
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Ssys = 
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,   where  

fCPU+Mem ─ fraction of total execution time during which an instruction is executing in the  
                      CPU and the main memory, including the time for any overhead in these  
                      subsystems;  

fI/O  ─  fraction of the total execution time during which I/O takes place, including the time for  

             I/O overhead (fI/O = 1 ─ fCPU+Mem)3.  
 
 
 

Overlapping  
 

Overlapping is the phenomenon of concurrent processing.  
In a microprocessor system there can be overlap between the CPU and I/O unit activities.  

Within the CPU there can be overlap between instructions fetching and execution.  
 

There are two tasks A and B. The both tasks take 10 seconds to run. Task A needs very little I/O, so it 
is not mentioning. Task B keeps I/O devices busy for 4 seconds; this time is completely overlapped 
with CPU activities. The old CPU is replaced by a newer model with 5× the performance.  

Replacement causes the following effect:  

 
The NEW system is not BALANCED!  

                                                 
3 It is assumed, that there are non-overlapping (CPU+Mem) and (I/O) systems.  
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System balance is the ability of the system to maximize processor productivity.  
To maximize processor performance, the exchange of data must be fast enough to prevent the 
compute processors from sitting idle, waiting for data.  
 
The faster the processors, the greater the bandwidth required and the lower the latency that can be 

tolerated.  
 
Balanced systems take into account the needs of the applications and matches memory, I/O and 

interconnect performance with computing power to maximize the processors utilization.  
 

The elapsed execution time of a task Tt, is:  
 

Tt = TCPU+TIO-TOL,   where  
 

TCPU - CPU is busy,  
TIO - I/O system is busy,  
TOL - overlap time.  

 
 
 

Balanced System  
 

A.  Speeding up the CPU  
 

OLD:  TCPU=6sec, TIO=4sec, TOL=2sec, Ta/Tb=4/2=2, Tt=8sec.  
NEW:  SCPU=3.  

OL – Overlapping in the CPU and I/O subsystem activities  
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Ta Tb

Ta Tb

I/O time

CPU time

I/O time

CPU time
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Time
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Tt
CPU = TCPU/SCPU+TIO-TOL/SCPU,   where  

 

SCPU - speed up CPU.  
 

TCPU = Ta+Tb,  
 

(Ta/Tb)
OLD = (Ta/Tb)

NEW  
 

Tt
CPU = 6/3 + 4 - 2/3 = 5,34 sec. (TOL is now 2/3s, where Ta=1,34sec and Tb=0,66sec)  

 

B.  Speeding up the I/O  
 

Tt
IO = TCPU+TIO/SIO-TOL/SIO,   where  

 

SIO - speed up I/O.  
 
 
 

Example  
 
The task takes 60 seconds to run. The CPU is busy 40 seconds and the I/O system is busy 30 
seconds. How much time will the task take if the CPU is replaced with one that has two times the 
performance?  

Tt
o=60 sec 

TCPU=40 sec  
TIO=30 sec  
SCPU=2  
Tt

n=?  
 

Tt = TCPU/SCPU + TIO - TOL/SCPU  
 

TOL = |Tt - (TCPU+TIO)|  
 
 

TOL = │60-(40+30)│ = 10 sec  
 

Tt
n = 40/2+30-10/2 = 45 sec  

 
Tt

o=60s, Tt
n = 45 sec,  

 
 

C.  Speeding up the CPU and the I/O Subsystems Concurrently  
 

Tt
S = TCPU/SCPU + TIO/SIO - TOL/(max(SCPU,SIO))  

 
The overlap period is reduced by the largest value of the speed up, i.e. max(SCPU,SIO).  
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At a system level bandwidths and capacities should be in balance. Each functional unit in the MPS 
is capable of demanding bandwidth and supplying bandwidth.  
 

There is a relationship between storage capacity and bandwidth requirement:  
 
 
 

Amdahl/Case Rule for a Balanced System  

 

1 MIPS <=> 1 MByte Memory <=> 1 Mbits/s I/O  
 

If corrected to 1 Mbyte/sec of I/O, then the rule is applicable for modern systems.  
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INSTRUCTION FETCH AND EXECUTION 
PRINCIPLES  

 
 
Von Neumann conceived a program as comprising two orthogonal sets of operations that worked 
in conjunction:  
1. A dataflow which did the physical manipulation of the data values,  
2. A control flow, which dynamically determined the sequence in which these manipulations  
      were done.  
 
Principle of orthogonally specifies that each instruction should perform a unique task without 
duplicating or overlapping the functionality of other instructions.  
 
Instruction — a coded program step that tells the processor what to do for a single operation in a 
program.  
   Instruction cycle - the process of fetching and executing an instruction.  
   Instruction cycle time (TICY).  
   Instruction types:  
 

1. Data movement instructions;  
2. Data processing instructions;  
3. Branch instructions;  
4. Environmental instructions.  

 

 Instruction set – the collection of instructions that a CPU can process.  
 

Instruction Cycle State Diagram (with interrupts*)  
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* Interrupt  ⇒  interrupt or exception  
TICY = φ(t1,t2,t3,t4,t5,t6,t7,t8,t9),  

TICY = var.  
max P (performance)  =>  min TICY  
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 Example  

Categories of Instruction Operators  
 

 

Operator type  
 

 

Example  
 

 

Arithmetic/logical 
 

 
Integer arithmetic and logical operations: add, subtract, and, or, multiply, divide  

 
Data transfer 

 

 

Loads-stores (move instructions on computers with memory addressing)  
 

 

Control 
 

 

Branch, jump, procedure call and return, traps  

 

System 
 

 

Operating system call, virtual memory management instructions  
 

 

Floating point 
 

 

Floating-point operations: add, multiply, divide, compare  

 

Decimal 
 

 

Decimal add, decimal multiply, decimal-to-character conversions  
 

 

String 
 

 

String move, string compare, string search  

 
 

Graphics 
 

 

Pixel and vertex operations, compression or decompression operations  
(Vertex is a point in 3D space with particular location, usually given in terms of 
x, y, and z coordinates.)  
 

 
 

Instruction Execution in Processor  
1.   Single-cycle  

• Each instruction executes in a single clock cycle.  
2.   Multi-cycle  

• Each instruction is broken up into a series of short steps.  
3. Pipelined  

• Each instruction is broken up into a series of steps.  

• Multiple instructions execute at once.  
 
 
 

Degree of Parallelism and Specialization  
 

The degree of parallelism of a processor is the number of operations it can execute concurrently.  
There is a duality between pipelining and parallelism.  
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A pipelined n stages deep functional unit has the same degree of parallelism  
as n functional units, since both of them need n independent operations to use the resources fully. 
To deliver the same performance, a pipelined processor must run at n times the clock speed of the 
parallel processor.  
 
Beside the degree of parallelism, it is also important the degree of specialization of the functional 
units available.  
 

The more specialized the resources are, the harder it is to use them all efficiently.  
 

Specialization can explain why the same degree of parallelism is harder to use in a pipelined 
processor than in a non-pipelined processor.  

 

While an n-stage pipelined unit has the same degree of parallelism as n parallel units, then the 
hardware for each pipeline stage is specialized, whereas each of the n parallel units is capable of 
performing the entire function.  
 

A.  If a processor has a higher degree of parallelism; it needs a large number of independent  
       operations to keep its resources fully utilized.  
B.  If it also has a higher degree of specialization, not all resources may be fully occupied even if  
      there are many independent operations. Processor is slowed down by its busiest type of resource.  
 
Instruction-level parallelism (ILP) refers to degree to which (on average) the instructions of a 
program can be executed in parallel.  
 

Instruction-level parallelism exists when instructions in a (program) sequence are 
independent and thus can be executed in parallel by overlapping.  

Machine parallelism is a measure of the ability of the processor to take advantage of instruction-
level parallelism.  
 

Machine parallelism is determined by the number of instructions that can be fetched and executed 
at the same time and by the speed that the processor uses to find independent instructions.  
 
 

Instruction Fetching  
 
The instruction fetch unit is an important resource. Increasing the width of the instruction fetch and 
decode unit does not necessarily translate to a similar increase in the effective instruction 
bandwidth. This is due to low dynamic run lengths in programs.  
 
Dynamic run length is the number of consecutive instructions executed up to and including the 
next taken branch.  

Since in each cycle the processor only fetches the continuous instructions in parallel, the 

effective fetch bandwidth is limited by the dynamic run lengths in the execution.  
 

Front-end //preprotsessor// – the mechanism(s) responsible for supplying instructions to  
                                                           the execution units.  

Back-end //postprotsessor//  –  the execution units.  
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The front-end includes the fetch unit, the decode unit, the rename unit and the support structures.  
 

The aim of a high-performance front-end is to keep the later stages of the processing pipeline busy 
by providing them with a sufficient number of instructions every cycle.  
To improve fetch throughput, the mechanism must fetch a large number of instructions that are not 
consecutive in the static program representation. This can be accomplished in several ways:  
 

1. Rearranging the static code so that basic blocks are consecutive in the static program. The 
rearrangement may be done statically or dynamically.  

2. Using hardware that can read multiple cache lines simultaneously.  
3. Observing the dynamic execution order as the program executes and caching instructions in 

their dynamic execution order.  
 
 

Control Flow and Handling Branches  
 
The control flow of a program is implemented by branch instructions. The branches are the 
essence of computation; their frequency (static or dynamic) is dominant among all instructions.  
For typical applications, branches comprise between one-third and one-fifth of all instructions. The 
branches are crucial to performance.  
 
The main problem during instruction fetch cycle is control transfer formed by branch, call, jump, 
return instructions or by interrupts.  
 

A. There is a problem with target instruction addresses that are not aligned (misaligned) to the 
cache line addresses.  
Misalignement occurs when a jump address is in the middle of a cache block. If a fetch group 
extends beyond the end of cache block, then another cache block must be read.  
If we have a self-aligned instruction cache //isejoondav käsuvahemälu//, then it reads and 
concatenates two consecutive lines within one cycle to be able to always return the full fetch 
bandwidth.  

 

C. One method, which can improve instruction fetch performance, is instructions  
         prefetching. The method requires that instructions can be fetched and stored in an  
         Instruction Queue before they are needed. The fetch unit must have hardware  
         which recognizes branch instructions and computes the branch target address.  

The technique of prefetching of instructions and executing them during a pipeline stall due to 
instruction dependency is called branch folding.  

D. Sometime is used instruction fetching prediction, which helps to determine the next  
        instructions to be fetched. Usually this method is applied in conjunction with  
        branch prediction. The method predicts the next instruction to fetch after fetching a  
        conditional branch instruction.  
 
 An efficient branch handling technique must guarantee:  
 

a.   An early determination of the branch outcome (branch resolution);  
b. Buffering of the branch target address //hargnemise siirdeaadress//, after its first calculation,  
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in a branch target buffer (BTB) or in a branch target address cache (BTAC) and an immediate 
reload of the program counter after a BTAC match.  
 

BIA BTA

Branch 
instruction 

address

Branch 
target 

address 

Branch 
history 

Branch Target Buffer (BTB) 
Instruction 

f etch 
address

to I-cache

Speculative target address Predict Taken or Not Taken 
 

 
BTB is a small cache memory accessed during the instruction fetch stage using the instruction 
fetch address. Each entry of the BTB contains two fields:  
 

a.  Branch instruction address (BIA) ;  
b.  Branch target address (BTA).  

 

When a static branch instruction is executed for the first time, an entry in the BTB is allocated 
for it. The BTB is accessed concurrently with the accessing of the I-cache.  
When the current program counter’s content matches the BIA of an entry in the BTB, a hit in 
the BTB results. This implies that the current instruction being fetched from the I-cache has 
been executed before and is a branch instruction. When a hit in the BTB occurs, the BTA field 
of the hit entry is accessed and can be used as for the next instruction fetch address.  
 
There are two main methods for branch prediction: static prediction and dynamic prediction.  

 

Static branch prediction predicts always the same direction for the same branch  
during the whole program execution.  
Dynamic branch prediction uses the special hardware for prediction.  
The simplest form of static prediction is to design the fetch hardware to be biased for not 
taken. When a branch instruction is encountered, prior to its resolution, the fetch stage 
continues fetching down the fall-through path without stalling.  

This is not very effective method!  
 

The most common branch condition speculation technique is based on the history of 
previous branch execution.  

 

History-based branch prediction makes a prediction of the branch direction, whether taken or not 
taken, based on previously observed branch directions.  
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Terminology (Branch Prediction Technique)  

 
Acronym  

 

 
 
 

 

Branch  
Address  

 

 

Branch  
History  

 

 

Target  
Address  

 

 

Target  
Instruction  

 

 

BHT  
 

 

Branch history table  
 

 

Yes  
 

 

Yes  
 

 

 
 

 

 
 

 
BTAC  

 

 

Branch target 
address cache  

 

 
Yes  

 

 
 
 

 
Yes  

 

 
 
 

 
BTIC  

 

 

Branch target 
instruction cache  

 

 
Yes  

 

 
 
 

 
 
 

 
Yes  

 

 

BTB  
 

 

Branch target buffer  
 

 

Yes  
 

 

Yes  
 

 

Yes  
 

 

 
 

 
BPC  

 

 

Branch prediction 
cache  

 

 
Yes  

 

 
Yes  

 

 
Yes  

 

 
Yes  

 

 
 

Amount of Parallelism Available within a Basic Block  
 
          Basic block   —   a straight-line code sequence with no branches in except to the entry  
//baas- ehk põhiplokk//   and no branches out except at the exit.  
 

For typical programs the average dynamic branch frequency is often between 20% and 33%, which 
meaning that between four and seven instructions execute between a pair of branches.  
The simplest way to increase the amount of parallelism available among instructions is to exploit 

parallelism among iterations of a loop. This type of parallelism is called loop-level parallelism.  
 

Generally ILP aims at speeding up the single processors.  
 
 

Widespread Methods of Increasing the ILP  
 
 

Hardware techniques  
a.  Speculative execution instructions;  
b.  Register renaming;  
c.  Out-of-order issue with instructions lookahead.  

 

Branch prediction is effective only then, if the branch is predictable.  
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Software techniques (usually incorporated into the compilers as optimizations)  
 

a. Trace scheduling;  
b. Loop unrolling;  
c. Software pipelining;  
d. Optimal register allocation algorithms;  
e. Static branch prediction.  

 
 
 

Instruction-Level Parallelism Techniques  
 

 

Technique  
 

 

Reduces  
 

 

Forwarding and bypassing  
 

 

Potential data hazard stalls  

 

Delayed branches and simple  
branch scheduling  

 

 
Control hazard stalls  

 

 

Dynamic scheduling with  
renaming  

 

 

Data hazard stalls and stalls from  
antidependencies and output dependencies  

 

Dynamic branch prediction  
 

 

Control stalls  

 

Issuing multiple instructions per cycle  
 

 

[Ideal CPI]  

 

Speculation  
 

 

Data hazard and control hazard stalls  

 

Loop unrolling  
 

 

Control hazard stalls  

 

Basic compiler pipeline scheduling  
 

 

Data hazard stalls  

 

Software pipelining, trace scheduling  
 

 

[Ideal CPI] Data hazard stalls  

4 

Compiler speculation  
 

 

[Ideal CPI] Data and control stalls  
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INSTRUCTION PIPELINING  
 
 

Pipelining is an instructions implementation technique in which multiple 
instructions are overlapped in execution.  

 

S1

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S2

S3

S3

S3

S3

S3

S3

Time 

Time 

Instructions

Instructions

I1

I1

I2

I2

I3

I3

UNPIPELINED 

PIPELINED

Clock cycle
1 2 3 4 5 6 7 8 9

1/Throughput

Latency

1/Throughput

Latency

SYNCHRONOUS SYSTEM 

Latency => Instruction total execution time 
Throughput [instructions per clock cycle] 

1/Throughput [clock cycles per instruction => CPI]

 

 
Pipelining is an implementation technique that exploits parallelism among the instructions in a 
sequential instruction stream. In the instruction pipeline multiple instructions are overlapped in 
exzecution.  
Pipelining yields a reduction in the average execution time per instruction. The reduction can be 
viewed as decreasing the number of clock cycles per instruction, as decreasing the clock cycle 
time, or as combination.  
 
Machine cycle – the time required between moving an instruction one step down the pipeline.  
 
The length of a machine cycle is determined by the time required for the slowest pipeline stage.  

The motivation for an n-stage pipeline is to achieve an n-fold increase in throughput.  
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The ideal pipeline is based on three idealized assumptions (pipelining idealism):  
 

1. Uniform subcomputations  
2. Identical computations  
3. Independent computations  

 
 
 

Pipelines Taxonomy  
 
 

1. Arithmetic pipeline  
Instruction pipeline  

 
2. Single function (unifunction) pipeline  

Multiple function* pipeline  
2a. Static (traditional) pipeline.  
       It is unifunctional until configuration changes  
2b. Dynamic pipeline.  

 
(3).  Non-configurable pipeline  

                Configurable pipeline:  
      a. Statically configurable (2a)  
          (at any given moment only one active configuration exists)  
      b. Dynamically configurable (2b)  
          (several active configurations, configurable on-the-fly)  

 
4.   Synchronous pipeline  

(tstage = const)  
     Asynchronous pipeline  

(tstage = var.)  
 

5 Scalar pipeline  
  Vector pipeline  
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Pipeline Models  
 

 

&

&

&

1

D1

D2

D3

D4

CLK

/CLK

DATA

Q

1-bit Earle latch 
 

 
The information is stored when CLK=1 and retained as long as CLK=0.  
The value on the DATA line should not be altered while CLK=1.  
The D1-gate is used to enter new data, the D3-gate is used to maintain old data, and D2-gate is 
used to eliminate logic hazards.  
 

Synchronous pipeline model  
 

tstage = fixed  
tstage = tFU + tlatch  
tclock = φ(tstage)  
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Linear and non-linear (folded-back) pipelines  
 
A folded-back pipeline is a way of avoiding synchronization overhead by using the same pipeline 
stage for more than one step in the processing. This strategy will only partially succeed because 
partitioning is imperfect, and even a perfect partition may have variance due to data-dependency.  

 
 
Asynchronous pipeline benefits  
 

1. Increased performance  
2. Power saving   
3. No clock problems  

 
 
 

Reservation Table  
 
In a reservation table, each row corresponds to a stage in the pipeline and each column corresponds 
to a pipeline cycle.  
The intersection of the ith row (stage) and jth column (clock) indicates that the stage i would be 
busy performing a subtask at a cycle j; where the cycle 1 corresponds to the initiation of the task in 
the pipeline. That is, stage i is reserved (not available for any other task) at cycle j.  
 
A. Reservation table for 4-stage linear pipeline:  
 
 
 
 
 

LINEAR PIPELINE

NON-LINEAR PIPELINE 

S1

S1

S2

S2

S3

S3

DATA IN

DATA IN

DATA OUT

DATA OUT



 143

The reservation table shows that each stage completes its task in one clock cycle time, and hence, 
an instruction cycle requires four clock cycles to be completed. The number of clock cycles that 
elapse between two initiations is referred as latency.  
The problem is to properly schedule queued tasks awaiting initiation in order to avoid collisions 
and to achieve high (maximum) throughput.  

Collision ⇒ if two or more initations attempt to use the same pipeline stage at the same time.  
 
 
B. Reservation table for 4-stage nonlinear pipeline  

 
The last two stages in the pipeline are used twice by each operand. Stage 3 (S3) produces a partial 
result and passes it on to stage 4 (S4). While stage 4 is processing the partial result, stage 3 
produces the remaining part of the result and passes it to stage 4. Stage 4 passes the complete result 
to stage2 (S2). Because stages 3 and 4 are used in subsequent cycles by the same set of operands, 
the operand input rate cannot be as fast as one per cycle.  
 
 
 

X

X

X

X
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S1 S3
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S4

S4

Stage

Clock
1 2 3 4

S2S1 S3 S4

X

X

X

X
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X

X
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Pipelining Efficiency  
 
 We assume that:  
 

Ni - the number of i-type instructions in the task,  

tST - the pipeline's start-up time,  

Ti - instruction i processing time,  

tcy - the cycle time in the n-stage pipeline.  
 

Ti ≈ tST  

tST = n ×××× tcy  
 

Total un-pipelined processing time (Ttotun ) is:  
 

Ttotun = Ni × Ti = Ni × tcy × n  
 

Total pipelined processing time (Ttotp ) is:  
 

tST = TI,  

Ttotp = (Ni-1) ×××× tcy + tST = tcy ×××× (Ni+n-1)  
                                                                  ↓  
                                 In each tcy pipeline produces a result for one instruction. 
 
 
The speed-up (SNi) of pipelining, for Ni is given by:  
 

SNi = Ttotun / Ttotp = (Ni ×××× tcy ×××× n) / (tcy ×××× (Ni+n-1))  
 

SNi = (Ni × n) / (Ni+n-1) = n / (1+n/Ni–1/Ni)  
 
If more Ni are processed (Ni→∞), then  
 

lim SNi = n  
             Ni→∞  

 
In the limit, the pipeline of n stages will be n times as fast as the corresponding  
non-pipelined unit.  
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Pipeline Clocking  
 
 

Single Phase Clocking  

 
        Data In                                                                                                       Data Out  
 
 
       Clock  
 
 
 
 
 
 
                                  td                       Pmax                         tg      
 
 
     Clock  
 
                                                                                                       tw  
 
 
 
 
                                                                             tc  
 

tc – cycle time  

tw – clock pulse width  

td – register output delay after data and clock are enable  

tg – register data setup time  

Pmax – maximum delay n FEU (without clock overhead C)  

C – clock overhead  

C = tg+td  
 
Stage cycle time —    the difference between the time that an instruction enters a pipeline  
                                  stage and the time that it leaves the stage.  
 

Computation time - the difference between the time that an instruction enters a computation  
                                   block and the time that all computed outputs are stable.  
 

Idle time —               the time that an instruction waits (at stage i), after computation has been  
                                   completed, before it moves to the next stage (i+1).  
 

Synchronization time - the time used to synchronize two adjacent stages which, for the  
                                        clock case, includes clock skew and latching time.  

  RG  FEU    RG  
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Stage clocking circuit  

Clock(s) skew (tSc)  
 
The clock skew //taktimpulsi kiivamine// is determined by differences in:  
 

1.  Clock signal lengths;  
2.  Differences in line parameters;  
3.  Differences in delays through active line elements;  
4.  Differences in latch threshold voltages.  

One architectural method for increasing processor performance is increasing the frequency by 
implementing deeper pipelines.  
 
Clock cycle overhead time is a portion of the cycle used for clock skew, jitter //taktimpulsi 

värin//, latching //lukustusviide// and other pipeline overheads.  
 
If we assume, that the overhead per clock cycle is constant in a given circuit technology, then we 
can increase the processor frequency by reducing the useful time per clock cycle.  
 
1.  Latches are faster than flip-flops.  
2.  Pipelines often are built with two-phase clock (MS flip-flop with logic in between stages).  
 
 
 
 

o

o

o

o

AND

AND

AND

AND

OR ORFEU

DATA 
IN DATA

OUT

Clock

/Clock

/Clock

Clock

Clk
HI

Clk
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t(max)
t(min)

t(max)
t(min)
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Generic Instructions Pipeline  
 
 
 

IF 

DC

OF 

EX 

WB 

 
 
 

IF – Instruction Fetch  
DC – Instruction Decode  
OF – Operand Fetch  
EX – Execute  
WB (OS) – Write Back (Operand Store)  

 
 

Special logic is needed for each pipeline stage.  
 
 
 
 



 148

Amdahl`s Law Applied to the Pipelined Processor  
 

Spip = 

n

q
q +− )1(

1 ,   where  

Spip  –  speedup of the pipeline  
q  –  fraction of the time when the pipeline is filled  
(1-q) – the fraction of time when the pipeline is stalled  
n  –  the number of the pipeline stages  

 
It is assumed that whenever the pipeline is stalled, there is only one instruction in the pipeline or it 
becomes a sequential nonpipelined processor.  
 
 

Deep Pipelines  
 
Processor performance can monotonically increase with increased pipeline depth, but due to 
unpredictable nature of code and data streams, the pipeline cannot always be filled correctly and 
the flushing of the pipeline exposes the latency.  
These flushes are inevitable, and pipeline exposures decrease IPC as the pipeline depth increases. 
The branch misprediction latency is the single largest contributor to performance degradation as 
pipelines are stretched.  
 

The overall performance degrades when the decrease in IPC outweighs the increase in 
frequency. 

 

The higher performance cores, implemented with longer (deeper) pipelines, will put more pressure 
on the memory system and require large on-chip caches.  
Increasing the pipeline depth divides the computation among more cycles, allowing the time for 
each cycle to be less.  
Ideally, doubling the pipeline depth (n) would allow twice the frequency.  
In reality, some mount of delay overhead (Toverhead) is added with each new pipeline stage, and this 
overhead limits the amount of frequency improved by increasing pipeline depth.  
 

f = 
overhedic

overhead

iccycle TnT

n

T
n

TT ×+
=

+

=
loglog

11
,   where  

Tcycle = tCY  
Tlogic – delay in stage logic circuits  

 

The equation shows how frequency is improved by dividing the logic delay of the instruction 
among a deeper pipeline.  
 
 
 

Doubling frequency requires increasing pipeline depth by more than a factor of 2.  
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Increasing the pipeline depth increases the number of pipeline stalls per instruction and reduces 
the average instructions per cycle.  
 
 
 
 
 Example  
 

Pipeline depth increasing  
 

Ttot = (Ni - 1) ×××× tCY + tST = tCY ×××× (Ni + n - 1)  
tstage = fixed  

 

IF IE

F D OF EX1 EX2 WB

4 4

1 1 1 1 1 1

nold = 2

tCYnew

tCYold

nnew = 6

tCYnew = 1 fnew = 1

tCYold = 4 fold = 0,25

IF - instruction fetch; IE - instruction execution 
F - fetch; D - decode; OF - operand fetch; EX1, EX2 - execution; WB - write back

 

 

nnew = nold + 4  
fnew / fold = 4  

Ttotold = tCYold ×××× (Ni + nold - 1) = 4 × (Ni + 2 - 1) = 4Ni + 4  

Ttotalnew = tCYnew ×××× (Ni + nnew - 1) = 1 × (Ni + 6 - 1) = Ni + 5  
Speedup = Ttotalold / Ttotalnew   

 

Speedup = 

i

i

i

i

N

N

N

N

5
1

4
4

5

44

+

+

=
+

+
  

Speedup = 4  

      limNi → ∞  
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In figures relative metric is tied to Pentium 4 microprocessor technical characteristics.  
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NB!    It is supposed, that the instructions are processed with no branches.  
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The real improvement depends upon how much circuit design minimizes the delay overhed per 
pipestage and how much microarchitectural improvements offset the reduction in IPC.  

 

The larger the number of pipeline stages, the greater the potential for speedup. Deep pipelines, 
which implement a fine-grained decomposition of a task, only perform well on long, uninterrupted 
sequences of the task iteration.  
 
 
 

The Optimum Pipeline Depth for a Microprocessor 
(by A. Hartstein and Thomas R. Puzak)  

 
The optimum pipeline depth {the number of pipeline stages} (nopt) for microprocessors can be 
expressed as:  
 

oH

pI

opt
tN

tN
n

×××

×
=

γα
2

,   where  

 

   NI – the number of instructions;  

   NH – the number of hazards (each hazard causes a full pipeline stall);  

   tp – the total delay of the pipeline (processor);  

   to – the latch (between pipeline stages) overhead for the technology being used;  

   α – an average degree of superscalar processing (whenever the execution unit is busy).  
          The α varies with the workload running at the processor.  
          For scalar processors α = 1 and for superscalar processors α > 1;  

   γ – the weighted average of the fraction of the pipeline stalled by hazards.  

0 ≤ γ ≤ 1  
 

0 0 0
n n n

Productivity 
P

Cost 
C C/P

n-opt
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 Some observations  
 
1. The optimum pipeline depth increases for workloads with few hazards (NH↓; nopt↑).  
2. As technology reduces the latch overhead (to), relative to the total logic path (tp), the optimum 

pipeline depth increases (to↓;nopt↑).  
3. As the latch overhead increases relative to the total logic delay, the optimum pipeline depth 

decreases (tp/to↓; nopt↓).  
4. As the degree of superscalar processing (α) increases, the optimum pipeline depth decreases 

(α↑; nopt↓).  
5. As the fraction of the pipeline that hazards stall (γ) decreases, the optimum pipeline depth 

increases (γ↓;nopt↑).  
 
 
 

Shallow–and-Wide Pipeline versus Deep-and–Narrow Pipeline  
 
Because the pipeline stages may take multiple cycle times, some processor architectures add 
additional stages to sub-divide the work performed at each stage, so the pipeline can move lock 
step with the processor clock speed. This results in two basic pipeline models:  
 

1. Shallow–and-wide pipeline //lühike ja lai konveier//;  
2. Deep-and–narrow pipeline //pikk ja kitsas konveier//.  

 
o The shallow–and–wide model is designed for energy efficiency. The shallow–and–wide 

approach uses a lower clock speed to the processor and a lower transistor count resulting in 
lower power consumption with the less thermal dissipation.  
The shallow–and–wide pipeline model is better suited for very “branchy” code.  

 
o In the deep–and–narrow model additional pipeline stages can reduce the amount of work 

performed at each stage and can increase the clock speed of the processor.  
The deep-and–narrow model is well suited to linear code with few branches where are  
doing a lot of repetitive operations.  
The “branchy” code will perform poorly, regardless of clock speed.  
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Per cycle is issued 1 instruction.

Superpipeline

Superscalar Pipeline 

n=4

m=4 

A superscalar pipeline of degree n can issue n instructions  
                                           per cycle.   

Per cycle is issued 4 instructions.  
Simple instruction latency measured in cycles is 1. 
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D 
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W
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W

Time in base cycles 

Operational latency is the time (in cycles) 
until the result of an instruction is available for use as an operand in a subsequent 
instruction.  

Base-, Super- and Superscalar Pipelines 

In a superpipeline of degree m, 
 

Per cycle is issued 1 instruction. 
Simple instruction latency measured m cycles is m. 
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Pipeline Hazards  
 
 
Correct operation of a pipeline requires that operation performed by a stage must not depend on 
the operation(s) performed by other stage(s).  
Dependencies are a property of programs. Presence of dependence indicates potential for hazard 
(risk), but actual hazard and length of any stall is a property of the pipeline.  
 

Hazard – the situation that prevents the next instruction in the instruction stream from  
                 executing during its designated clock cycle.  
 
 

Classes of Hazards  
 
1. Structural hazards (resource conflicts)  

The hardware cannot support all possible combinations of instructions in simultaneous 
overlapped execution.  

 

� Multiple copies of the same resource (replication).  
� Instructions prefetch (forming instructions queue)  

 

Starvation – the result of conservative allocation of resources in which a single process is  
                       prevented from execution because it’s kept waiting for resources that never  
                       become available.  
Critical region ─ the parts of program that must complete execution before other processes  
                               can have to the resources being used.  
Deadlock – a problem occurring when the resources needed by some processes to finish  
                      execution are held by other processes, in turn, are waiting for other resources to  
                      become available.  
 

Deadlock conditions:  
 

1. Mutual exclusion //vastastikune välistamine// - only one process is allowed to have access 
to a dedicated resource.  

2. Resource holding //ressursihõive// - it’s an opposed to resource sharing.  
3. No preemption //puudub väljasaalimise// - the lock of temporary reallocation of resources.  
4. Circular wait //ringootus// - a process involved in the impasse is waiting for another to 

voluntarily release the resource.  
 

All four conditions are required for the deadlock to occur and as long all four conditions are 

present the deadlock will continue; but if one condition can be removed the deadlock will be 

resolved.  
 
2. Control hazards (procedural conflicts)  

Instructions following a conditional branch instruction have procedural dependency on the 
conditional branch instructions.  

 

Speculative execution = Branch Prediction + Dynamic Scheduling  
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3. Data hazards  
Hazards arise when an instruction depends on the results of a previous instruction in a 
way that is exposed by the overlapping of instructions in the pipeline.  

 

 Data hazards due to register operands can be determined at the decode stage.  
 Data hazards due to memory operands can be determined only after computing  

the effective address.  
 
 

Data Hazard Types  
 
Data hazards occur among instructions because the instructions may access (read, write) the same 
storage (a register or a memory) location.  
There are the true dependencies as RAW hazards, because the consuming instruction can only read 
the value after the producing instruction has written it.  
In addition are artificial dependencies (name dependencies) where two instructions use the same 
name but don’t exchange data. These name dependencies result from WAR and WAW hazards.  
 

Consider two instructions A and B, with A occurring before B.  
 

1.  True data dependencies (read after write or RAW)  
Instruction B (IB) tries to read a source before instruction  
A (IA) writes it, so B incorrectly gets the old value.  

 

ADD R1, R2, R3              R1:=(R2)+(R3)    [R1/WB]   {IA}  
SUB R4, R5, R1               R4:=(R1)-(R5)     [R1/D]       {IB}  

 

ADD

SUB

F

F

D

D (R1)

E

E

W (R1)

W

 
 

2.  Output dependencies (write after write or WAW)  
Instruction B tries to write an operand before it is written by instruction A.  

 

3.  Antidependencies (write after read or WAR)  
Instruction B tries to write a destination before it is read by instruction A, so 
instruction A incorrectly gets the new value.  
As in pipelines the values reading occurs before than writing results, such hazards are 
rare.  

 
 

Data Hazards Summary  
 

Instruction b follows instruction a in the program order.  
WR(a) – register content is modified by instruction a.  
RR(a) – register content is read by instruction a.  
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WAR:   RR(a) ∩ WR(b) ≠ Ǿ;  
RAW:   WR(a) ∩ RR(b) ≠ Ǿ;  
WAW:   WR(a) ∩ WR(b) ≠ Ǿ.  

 
Terms that are used for various types of data dependencies  

 

              Kogge                                    Flynn                                   Johanson  
 

             RAW                                  Essential                                    Data  
             WAW                                   Output                                   Output  
             WAR                                  Ordering                                    Anti  

 
Example  

 

Execution instructions (I1, I2, I3) on an out-of-order CPU which has two execution units:  
 

 
 
 
 
 Data Hazards Involving Registers  
 

1. Instruction I3 is able to enter the execution stage even before I2, since I3 does not depend on any 
result of the proceeding instructions. It even terminates before I1 and this causes a WAW hazard.  

2. Instruction I2 tries to read R1 before I1 writes it. There is a RAW hazard.  
3. Since instruction I3 writes R1 before I2 reads it, there is a WAR hazard.  

 
 
 

Dealing with Hazards in Pipelines in General  
 

Issue:                        a. check structural hazards;  
                                  b. check for WAW hazards        [stall issue until hazard cleared]  
Read operand:         check for RAW hazards             [wait until data ready]  
Execution:                execute operations  
Write back:              check for WAR                           [stall write until clear]  

 
 

F 

F 

F 

D 

D 

D 

W 

W 
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Clock 
Cycles

D D D 

I 1:    R1 = R3 / R2 

WAW WAR 

RAW

I 3 :    R1 = R5 + R30 

I2 :    R4 = R1 * R1 
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Generally, the CPI for a pipelined processor is equal to:  
 

 
 
 
 

Solution Strategies for Pipeline Hazards Caused by Resource Conflicts  
 

General resource conflicts might be avoided by instruction scheduling or by resources 
replication.  

 
 
 

Solution Strategies for Pipeline Hazards Caused by Data Dependences  
 

1. Data speculation;  
2. Operand forwarding (result (register) forwarding), load forwarding, store queue;  
3. Software scheduler;  
4. Hardware scheduler (out-of-order execution).  

 
 

Data speculation  
 
Instructions, threads whose operands are not yet available, are executed with predicted data. 
What can be speculated on?  
 

a.  Register operand;  
b.  Memory address;  
c.  Memory operand.  

 
 

Register (Operand) Forwarding  
 

A. Hardware operand forwarding allows the result of one ALU operands to be available 
to another ALU operation in the cycle that immediately follows.  

 
To reduce pipeline stalls by data hazard, the register forwarding (bypass) is used to handle 
RAW.  
 

I1:   R1 := R2 + R3  
I2:   R4 := R1 + R5  

 
A 4-stage pipeline that does not support register forwarding  

  Pipeline CPI = Ideal Pipeline CPI + Structured stalls + Data hazard stalls + Control hazard stalls  
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a.  R1 must be updated before R1 in I2 is read.  
b.  R1 in I1 is updated at W stage, but R1 in I2 is read in D stage.  
c.  The pipeline must be stalled (I2 bubble) until R1 is updated in I1 (RAW hazard!).  

 
A 4-stage pipeline that supports register forwarding  

 
 
There are two types of complexity regarding register forwarding:  
 

1. Bypass control (determines which result in pipeline should be forwarded).  
2. Result drive (determines which destinations the result must be forwarded).  
 

B. Software operand forwarding is performed in software by compiler.  
This feature requires the compiler to perform data dependency analysis in order to 
determine the operand(s) that can possibly be made available (forwarded) to subsequent 
instructions.  

 
Software Operand Forwarding  

 

 

 
 

 

Store – Fetch  
 

 

Fetch – Fetch  
 

 

Store – Store  
 

 
 

Original instruction 
sequence  

 

Store R2, (R3)  
M[R3] ← R2  

Load (R3), R4  
R4 ← M[R3]  

Load (R3), R2  
R2 ← M[R3]  

Load (R3), R4  
R4 ← M[R3]  

Store R2, (R3)  
M[R3] ← R2  

Store R4, (R3)  
M[R3] ← R4  

 

Modified instruction 
sequence  

 

 

Store R2, (R3)  
Move R2, R4  

R4 ← R2  

 

Load (R3), R2  
Move R2, R4  

 

 

Store R4, (R3)  
M[R3] ← R4  

 

I1

I2

F

F 

D 

D 

E 

E 

W

W

Clock

0 1 2 3 5 4 

The result of instruction I1

 is written into register R1

The content of register R1 (formed by I1) 
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Solution Strategies for Pipeline Hazards Caused by Control (Procedural) 
Dependences  

 
1. Branch prediction //hargnemise prognoosimine//;  
2. Delayed branches //viidatud siire//;                                          Control  
3. Traces (threads) //lõimed//;                                                     speculation  
4. Multipath techniques //mitmiklõime meetodid//.           

 
 

Branch Prediction  
 
Branch prediction – a method whereby a processor guesses the outcome of a branch  
                                       instruction so that it can prepare in advance to carry out the  
                                       instructions that follow the predicted outcome.  
 

Static branch prediction is a prediction that uses information that was gathered before the 
execution of the program.  

The common static strategies that are used to predict whether a branch will be taken or not 
(predict never taken, predict always taken, predict by opcode). Overall probability a branch is 
taken is about 60-70%, but probability of backward branch is ~90% and forward branch is 
~50%.  

 

Dynamic branch prediction uses information about taken or not-taken branches gathered at run-
time to predict the outcome of a branch.  

Branch history tables (BHT) are widely used in dynamic prediction strategy.  

Branch penalty (BP) can be evaluated as:  
 

BP = wc × (1-a) × br × IPC,   where  
 

wc – the number of clock cycles wasted due to a branch misprediction;  
a – the prediction accuracy (a = 0 ÷ 1);  
br – the ratio of the number of branches over the number of total instructions.  

 
 
 

Branch Prediction and a Delay Slot  
 
� It might appear that in the modern highly pipelined CPU the unconditional branches are  

not a problem. There is no ambiguity about where to go.  
� The trouble lies in the nature of pipelining. As a rule, the instruction decoding occurs in the 

pipe's second stage. The fetch unit has to decide where to fetch from the next before it knows 
what kind of instruction it just got.  
Only one cycle later can it learn that it picked up an unconditional branch, but then it has 
already started to fetch the instruction following the unconditional branch.  

� A substantial number of pipelined CPUs have the property that the instruction following an 
unconditional branch is executed, even though logically it should not be.  

� The position after branch is called - delay slot //viitepilu//.  
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Delayed branch is a type of branch where the instruction, following the branch is always executed, 
independent of whether the branch condition is true or false.  
 

The delay slot may be formed also after a load instruction (Load Delay Slot).  
 

I1

I2

F

F

D

D

E

E E

W

W

1. The original istruction sequence

I1

I2

Ix

F

F

F

D

D

D

E

E

E

W

W

W

2. Modified instruction sequence

Load instruction

Load instruction

Load Delay Slot 

Data is ready 

 
 
Processors with very deep pipelines could have two or more delay slots.  
The more delay slots that exist after a conditional branch instruction, the more difficult it will be 
for the compiler to find useful, independent instructions with which to fill them.  
 
 

Pipeline Performance with Delay Slots  
 

Assume single cycle (tcy = 1) execution for all instructions except loads, stores and branches.  
The average number of cycles per instruction (CPIave) is given by:  
 

CPIave = Pb ×××× (1+Bp) + Pm ×××× (1+Mp) + (1−−−−Pb−−−−Pm) ×××× (tcy) =  

 = 1 + Bp ×××× Pb + Mp ×××× Pm,  (1)  where  
 

Pb - probability that an instruction is a branch;  
Bp - branch penalty;  
Pm - probability that an instruction is memory reference;  
Mp - memory reference penalty.  

 
T. R. Gross and J. L. Hennessy developed an algorithm for optimizing delayed branches and have 
shown that the first branch delay slot can be filled with useful instructions more than half the time, 
while the subsequent delay slots are increasingly harder to fill.  
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Handling Conditional Branches in Modern Processors  
 
The conditional branches are worse. Early pipelined CPUs stalled until it was known whether the 
branch would be taken or not.  
There are different possibilities to handle conditional branches in modern processors.  
 

A. The Dynamic Branch Prediction  

 
Branch history table //hargnemiste eelloo tabel// (BHT) logs conditional branches as they 
occur. The BHT is a small cache memory associated with the instruction fetch stage of 
pipeline. Each entry in the table contains of three elements: the branch instruction address, 
some history bits and information about the target instruction.  
In most implementations the third field contains the address of the target instruction  
(in the branch target buffer BTB) or the target instruction itself.  

 

C.  2-bit Branch Prediction  
 

There is a BHT holding 2-bit counters for each of the recently accessed branches in processor. 
Each counter holds the value “00”, “01”, “10” or “11”. Whenever a branch is taken, its 2-bit 
counter is incremented if it is below the maximum value “11”.  
Whenever a branch is not taken, its 2-bit counter is decremented. This incrementing or 
decrementing is "saturating” as incrementing stops at “11”, and decrementing stops at “00”. 
When a branch instruction is fetched, its address is used to look up the value of its counter for 
that branch.  
 
  If the value is a “00” or “01”, the branch is assumed to be not taken.  
  If the value is “10” or “11”, the branch is assumed to be taken.  

 

11 10 01 00
Predict 

"Taken"
Predict 

"Taken"

Predict 
"Not 

Taken"
Taken Taken Taken

Not Taken Not Taken Not Taken

Taken Not Taken

Predict 
"Not 

Taken"

 
 

C. The Dynamic Pipeline Scheduling and Reservation Stations  
 

Dynamic pipeline scheduling chooses which instructions to execute in a given clock cycle while 
trying to avoid hazards and stalls. In processors the pipeline is divided into three major units:  

 

1.  Instruction fetch unit (FU),  
2.  Execution unit (EU),  
3.  Commit unit (CMU).  

 

Each functional unit has buffers, so called reservation stations (RS) //ootejaam,ootepuhver//.  
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Reservation station is a buffer within a functional unit that holds the operands and operation. 
As soon the buffer contains all its operands and the proper functional unit is ready to execute, 
the result is calculated.  
When the result is completed, it is sent to any RSs waiting for this particular result as well as to 
the commit unit (CMU). Commit unit buffers the result until it is safe to put the result into the 
register file or for store into memory.  
The special buffer in the CMU, the reorder buffer (ROB) //ümberjärjestamise puhver//, is used 
to supply operands.  

ROB

FPRGF

FP 

Operations 

Queue

RS RS

FPU1 FPU2

 
 

To make programs behave as if they were running on a simple in-order pipeline,  
the instruction fetch and decode unit is required to issue instructions in order, which allows 
dependencies to be tracked, and the commit unit is required to write results to registers and 
memory in program execution order. This mode is called in-order completion.  

 

If an exception occurs, the processor can point to the last instruction executed, and the only 
registers updated will be those written by instructions before the instruction causing the 
exception.  
In this case the front end and the back end of the pipeline run in order, the execution units are 
free to initiate execution whenever that data they need is available.  

 

C. Speculative Execution  
 

Speculation – the processor (or compiler) guesses the outcome of an instruction so as to  
                         enable execution of other instruction that depend on the speculated  
                         instruction. Producing correct results during speculative execution requires  
                         result checking, recovery and restatrt hardware mechanisms:  
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Checking mechanisms to see if the prediction was correct;  
Recovery mechanisms to cancel the effects of instructions that were issued under  
                                            false assumptions (e. g., branch mispredictions);  
Restart mechanisms to re-establish the correct instruction sequence.  
 

S peculative Execution 

Control Speculation Data S peculation 

Branch Direction 

Branch Target 

Data Location 

Data Value 

Aliased 

Address

 
 

1. Control speculation //spekulatiivne juhtimine//  
  Refers to the execution of instructions before it has been determined that they  
                        would be executed in the normal flow of execution.  

2. Data speculation //spekulatiivsed andmed//  
It refers to the execution of instructions on most likely correct data values.  

 
 

Control Speculation and Branches in the Speculative Instructions Stream  
 
1. Each speculative instruction is tagged with speculative bit which is carried throughout all 

pipelines;  
2. The speculative instruction is stalled in the decode stage if second branch encountered before 

the previous speculative branch resolves;  
3. When speculative branch resolves, then if:  
 

a. Prediction was correct ⇒ clear speculative bit on all speculative instructions,  

b. Prediction was incorrect ⇒ discard all instructions tagged as speculative.  
 

To allow speculation past multiple branches multiple tagging bits are added per instruction, 
indicating on which outstanding branches the instruction is speculative.  
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Data Speculation  
 
Data dependencies are a major limitation to the amount of ILP that processors can achieve.  
Data value speculation can eliminate the ordering imposed by data dependencies.  
 

Data dependencies cause a serialization on the execution of program instructions.  
 

Data value speculation refers to the mechanisms that deal with data dependencies by predicting the 
value that flow through them and execute speculatively the instructions that consume the predicted 
value.  
 

Data dependence speculation refers to the techniques that are based on predicting dependencies 
among instructions and executing speculatively the code by enforcing the predicted dependences.  
 

Data value speculation is based on the observation that inputs and outputs of many instructions 
sometimes follow a predictable pattern.  
 

Load value prediction is more powerful than load address prediction, since the memory access has 
to perform in order to obtain the predicted value, even if the memory address is correctly 
predicted.  
 

Speculatively issued loads must be verified.  
 

This is done by issuing them to the address computation unit when their source operands are 
available. The actual address is compared to the predicted one and in the case of a misprediction, 
the predicted load and those instructions dependent on it are re-executed.  
 
 

E.  Out-of-order (OOO) Execution  

 
A processor’s instruction issue and completion policies are:  

 

� In-order issue with in-order completion;  
� In-order issue with out-of-order completion;  
� Out-of-order issue with out-of-order completion;  
� Out-of-order issue with out-of-order completion and in-order commit.  

 

Out-of-order execution is a situation in pipelined execution when an instruction blocked 
from executing does not cause the following instructions to wait.  

 

An out-of-order architecture takes code that was written and compiled to be executed in a 
specific order, reschedules the sequence of instructions so that they make maximum use of the 
processor resources, executes them, and then arranges them back in their original order so that 
results can be written out to memory.  
An out-of-order-processors use schedulers, which scan a window of upcoming instructions for 
data dependencies. The scheduler determines which instructions must wait for results from others 
and which are ready to execute. The scheduler can take into account not just the data and 
instruction needs but also any execution resources.  
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Example  

 
In-Order Instruction Issue with Out-Of-Order Instruction Completion  
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Memory Hazards and OOO  
 

Memory hazards can occur during store and load operations. Store (address) buffers are used to make 
sure memory operations don’t violate hazard conditions. Store addresses are buffered in a FIFO queue. 
Store address buffers contain the addresses of all pending store operations.  
Store addresses remain buffered until:  

1. Their data is available;  
2. The Store instruction is ready to be committed.  

 
 

Branches in Oout-of-order Processors 
 

To recover mispredict branches in in-order processors all instructions following a branch in 
pipeline are discarded. In out-of-order processors are used shadow registers and memory buffers 
for each speculative branch.  
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 Appendix  
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IF/ID - pipeline register between the IF (instruction fetch) and ID (instruction decode and register file read) stages. 
ID/EX - pipeline register between ID and EX (execution or address calculation) stages. 

EX/MEM - pipeline register between EX and MEM (data memory stages). 
MEM/WB - pipeline register between MEM and WB (write back) stages.   

Pipeline´s Simplified Data and Control  Paths 
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Pipeline Interrupts  
 
 
Precise interrupt – it is required that that the system state, when the interrupt (exception)  
       (exception)    occurs, is the same as that in a nonpipelined CPU that executes   
                                     instructions in sequential order.  
 
In that case an interrupt (exception) occurring during the execution of instruction Ij is precise if 
the following conditions are met:  
 

1. All instructions issued prior to Ij have completed their execution;  
2. No instruction has been issued after Ij;  
3. The program counter PC contains Ij’s address.  

 
The most direct is to make all interrupts (exceptions) precise by forcing all instructions  
to complete in the order in which they are issued.  
 
Methods for supporting speculation without introducing incorrect exception behavior:  
 

1. HW and OS ignore exceptions for speculative instructions.  
2. A set of bits (poison bits) are attached to result registers written by speculated 

instructions when the instructions cause exception.  
3. HW support for speculation – buffer results from instructions until known that the 

instructions would execute (in ROB).  
 
Interrupts (exceptions) in pipelined processor that are not associated with exact instruction that was 
the cause of the interrupt (exception) are called imprecise interrupts (exceptions).  
 
When delayed branching is used, the instructions in the branch-delay slot are not sequentially 
related. If during execution an instruction in the branch-delay slot the interrupt is occurs, and the 
branch is taken, the instructions in the branch-delay slot and the branch-target instruction must be 
restarted after interrupt is processed.  
 
In the case of OOO completion we must provide a mechanism to recover the precise state or 
context of the processor at the time of the interrupt.  
 

A small register set a history buffer (HB), is used to store temporarily the initial state of 
every register that is overwritten by each executing instruction Ij.  
If an interrupt occurs during Ij’s execution, the corresponding precise CPU state can be 
recovered from the values stored in HB, even if a second conflicting interrupt is generated 
by a still-completing instruction.  
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 Example  
 

Ideal CPU Performance  

 
 
 
 
 
 
 

Implementation  
 

 
CPU parameters  

 
Perfect branch prediction with no Load/Store misses and stalls.  

1. Program has 1000 instructions with:  
a. 20% Branch instructions;  
b. 10% Control instructions;  
c. 20% Load instructions;  
d. 10% Store instructions;  
e. 40% Arithmetic instructions.  

2. CPU clock frequency (F) is 1 GHz.  
 

TCPU = IC ×××× CPI/F  
 

 
 

Non-pipelined  
[Every instruction takes  
4 clock cycles to execute]  
 

 
TCPU = (0,2 CPIB + 0,1 CPIC + 0,2 CPIL + 0,1 CPIS +  

 + 0,4 CPIA) ×××× 1000 / 109  
 

TCPU = (0,2 × 4 + 0,1 × 4 + 0,2 × 4 + 0,1 × 4 + 0,4 × 4) × 10-6 =  

 = 4 ×××× 10-6 s  
 

 
Pipelined  

4-stage pipeline  
F, D, E, W  

[In every clock cycle is 
retired only one instruction.  
Each instruction takes one 
clock cycle to execute.]  
 

 
TCPU = (0,2 CPIB + 0,1 CPIC + 0,2 CPIL + 0,1 CPIS +  

 + 0,4 CPIA) ×××× 1000 / 109  
 

TCPU = (0,2 × 1 + 0,1 × 1 + 0,2 × 1 + 0,1 × 1 + 0,4 × 1) × 10-6 =  

 = 1 ×××× 10-6 s  
 

 
Pipelined  

3-way superscalar  
[In a given clock cycle we 
can retire one of the 
following instruction groups:  
a. 3 Arithmetic instructions;  
b. 3 Branch instructions;  
c. 2 Control instructions;  
d. 1 Load instruction;  
e. 1 Store instruction.]  
 

 
TCPU = (0,2 CPIB + 0,1 CPIC + 0,2 CPIL + 0,1 CPIS +  

 + 0,4 CPIA) ×××× 1000 / 109  
 
 

TCPU = (0,2 × (1/3) + 0,1 × (1/2) + 0,2 × (1/1) + 0,1 × (1/1) +  

 + 0,4 × (1/3)) × 10-6 ≈ 0,5 ×××× 10-6 s  
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Type 

 

 
Number 

of pipelines  

 
Issue order 

 
Instructions 

per cycle 

 
Scheduling 

Simple scalar 1 in - order 1 static 

Scalar >1 in – order 1 static 

Superscalar 
in-order 

 

>1 
 

in - order 
 

>1 
 

dynamic 

VLIW >1 in – order >1 static 

Superscalar 
out-of-order 

 

>1 
out-of- 
order 

 

>1 
 

dynamic 

 
Comment  

Timing Anomalies  
 

Most powerful microprocessors suffer from timing anomalies.  
Timing anomalies are contraintuitive influences of the (local) execution time of one instruction on the 

(global) execution time of the whole task.  
 

If the processor speculates on the outcome of conditional branches, it prefetches instructions in one of the 
directions of the conditional branch. When the condition is finally evaluated it may turn out that the 
processor speculated in the wrong direction. All the effects produced so far have to be undone.  
In addition, fetching the wrong instructions has partly ruined the cache contents.  
The local worst case, the I-cache miss, leads to the globally shorter execution time since it prevents a more 
expensive branch misprediction. This exemplifies one of the reasons for timing anomalies, speculation-

caused anomalies.  

Another type of timing anomalies are scheduling anomalies.  
These occur when a sequence of instructions, partly depending on each other, can be scheduled 
differently on the hardware resources, such as pipeline units. Depending on the selected schedule, 
the execution of the instructions or pipeline phases takes different times.  
 
 

Appendix  

Operational Unit (Arithmetic) Pipeline  
Floating-point ADD operation pipeline  

 

Buffer registers (RG) needed when the processing times for pipeline stages are not equal. Some flag bits 
indicate the completion of processing at the output of each stage may be needed. In addition to the 
pipelining within the functional units, it is possible to pipeline arithmetic operations between the functional 
units. This is called chaining //aheldus//.  

RG RG
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SUM 
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SUPERSCALAR PROCESSORS FUNDAMENTALS  
 
 

Basic Evolution Phases of Processors  
 

            I                        II                            III  
 

   Traditional von             Scalar ILP                   Superscalar ILP  
Neumann processor         processor                         processor  
 
   Instructions                   Instructions                   Instructions  

    sequential                      sequential                        parallel      

        issue                               issue                               issue         

    Sequential                        Parallel                          Parallel       

    execution                        execution                       execution    
 
  [Nonpipelined               [Processors with          [VLIW and super- 
   processors]                    multiple nonpipe-        scalar processors:  
                                         lined execution            processors embodying  
                                         units or pipelined         multiple pipelined  
                                         processors]                   execution units]  
 

 
                          Parallelism of instruction issue  
                          Parallelism of instruction execution  
                          Processor performance  

 
Generally, CPU’s absolute performance PCPU can be expressed as follows:  
 

PCPU = f × IPC,   where  
f – the clock frequency,  

IPC – instructions per clock cycle (per cycle throughput)  
 

IPC can be expressed by two CPU’s internal operational parameters:  
 

IPC =IPII / CPII = 1/CPII × IPII,   where  
 

IPII – instructions per issue interval  
CPII – cycles per issue interval  

 

Issue intervals are subsequent segments of the execution time of a program such that each issue interval 
begins at a clock cycle when the processor issues at least one instruction and ends when the next issue 
interval begins.  

In sequential processors CPII equals to the average execution time of the instructions, i. e.,  
CPII >> 1.  
The CPII for pipelined or superscalar processors is CPII = 1, and for superpipelined processors is 
CPII < 1.  
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CPII reflects the temporal parallelism of instruction processing.  

0 1 2
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For scalar processors IPII = 1, and for superscalar processors  
 

1 < IPII < nI,   where 
nI – the issue rate of processor.  

 

IPII reflects the issue parallelism.  
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The benefit of using IPII and CPII instead of IPC or CPI is being able to identify two sources of 
parallelism separately.  
While taking account the average number of data operations proceeds per cycle (DOPC) we get:  
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DOPC = IPC × OPI,   where  
OPI – operations per instruction (average).  
OPI reveals intrainstruction parallelism.  

 
Practically OPI<1.  

 
For instruction sets including multioperation instructions the OPI > 1.  
 

OPC  =  1 / CPII  ×  IPII  ×  OPI  
PCPU = f × (1/CPII) × IPII × OPI  

 

The key possibilities for boosting processor performance in the processor microarchitecture:  
 

1. Increasing the clock frequency;  
2. Increasing the temporal parallelism;  
3. Increasing the issue parallelism;  
4. Increasing intrainstructions parallelism.  

 
 

Increasing Instruction Executing Rate  
 
There are two fundamental ways of increasing a processor’s instruction executing rate:  
 

1. By increasing clock speed.  
This approach relies on improvements in IC technology.  

2. By increasing the number of instructions that are executed simultaneously.  
This approach relies on improvements in processor’s architecture.  

 
Both factors, increasing issue width and pipeline depth, place increasing pressure on the instruction 
fetch unit. Increasing the superscalar issue width requires a corresponding increase in the 
instruction fetch bandwidth.  
 
 
 Recall Little’s Law  
 

Parallelism (P) = Throughput (T) × Latency (L)  
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Pipelined ILP Machine  
 

 

 
Question: How much instruction-level parallelism (ILP) required to keep processor pipelines 

busy?  
 

T = 8;  Ltot = [(4 × 1) + (2 × 3) + (2 × 4)] / 8 = 9/4; P = 8 × 9/4 = 18 instructions  
 
Contrary to pipeline techniques, ILP is based on the idea of multiple issue processor (MIP).  
An MIP has multiple pipelined datapaths for instruction executing.  
 
 
 

Resource Replication and Widening  
 
In order to increase the number of operations performed per cycle the resources of the processor 
must be increased. There are used two alternatives – resource replication //replikatsioon e 
dubleerimine// and widening //laiendamine//.  
 

Resource replication consists of increase the number of resources available by adding more 
independent functional units.  
Resource widening consists of increasing the number of operations that each functional unit can 
simultaneously perform per cycle.  
 

The replication is more versatile than the widening technique.  
 

� Applying a replication degree of n means that the processor can access n independent words in 
memory or perform n independent operations per clock cycle.  

� Applying the same degree of widening requires a study at compile time to detect compactable 
operations.  

 

On the other hand, the replication technique has, in general, higher costs than the widening 
technique.  
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Buses  
 

• Widening increases the width of the data bus, but not the control and address bus.  

• Replication increases the number of buses between the register file and the L1 cache.  

• Widening requires no additional address translations, while replication requires several 
address translated per cycle.  

 

 Register File  
 

• Applying replication increases the number of ports per bit.  

• Both techniques increase the register file area on chip and clock cycle time.  
 

 Code size  
 

• Widening can reduce the total number of instructions.  

• The reduction of the code size can reduce the miss rate of the instruction cache and 
improve performance.  

 

For a given technology, the best performance is obtained when combining a certain degree of 
replication and widening in the hardware resources.  

 
It is more effective than applying only the replication of resources.  
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Instruction Fetch  
 
 
In the instruction fetch stage s instructions are getting out of the instruction cache during each 
clock cycle. These instructions are called fetch group //käsuvõtu grupp//.  
Let p be that probability that instruction is a taken branch or unconditional branch (jump).  
Let assumes that the fetch stage can predict whether the branch is taken.  
If the first instruction in the fetch group is a taken branch or unconditional jump, then the rest of 
the instructions in the fetch group should not be executed.  
The probability of P1 that an only one executable instruction (the branch or jump) is fetched:  

P1 = p  
 

The probability of fetching two executable instructions P2 is:  
 

P2 = (1-p) × p  
 

The last instruction in the fetch group is executable whether it is a taken branch or unconditional 
branch  

PS = (1-p)s-1  
 
The average number of fetched instructions that are executable SE is:  
 

SE = 1×P1 + 2 × P2 + … + (s-1) × Ps-1 + s × Ps    or  

SE = 
p

p
s)1(1 −−

  

 

When the fetch group is small (s<1/p), almost all of the instructions are executable (SE  = s).  
For large fetch groups (s>1/p), the average number of executable instructions can never be any 
large than (1/p), i.e., SE < 1/p.  
General purpose instruction streams typically have at least 10% taken branch and unconditional 
branch instructions (p=0,1).  
 

s
1/p0

SE SE=s

 
 

The limit on the number of executable instructions in fetch group would seem to be a serious 
limitation for large superscalar processors.  
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Instruction Window  
 

Instruction window – the set of instructions that is examined for simultaneous executing.  
Since each instruction in the window must be kept in processor and the number of comparisons 
required to execute any instruction in the window grows quadratically in the window size, real 
window size are likely to be small.  
The number of comparisons required every clock cycle is equal to:  
 

(maximum instruction completion rate) × (window size) × (number of operands per instruction)  
 

The window size limits the maximum number of instructions that may issue.  
The notion of the instruction window comprises all the waiting stations between the decode 
(rename) and execute states (FUs).  
 
The instruction window isolate the decode/rename stage from the execution stages of the 
instruction pipeline. The decode stage continues to decode instructions regardless of whether they 
can be executed or not. The decode stage places the decoded instructions in the instruction window 
as long as there is room in the window.  
 
The instructions in the instruction window are free from control dependences, which are removed 
by branch prediction and free from antidependences or output dependences, which are removed by 
renaming. Only data dependences (RAW) and resource dependences remain to be taken into 
consideration.  
 
 
Instruction dispatch – assigning an execution unit to an instruction.  
Instruction issue – beginning execution of an instruction on an execution unit.  
 

Aligned issue – until all the n instructions have not completed their execution, the  
                                                following group is not decoded/issued.  
 

Alignment-free issue – it is possible to decode/issue instructions following the  
                                       group without completing the execution of the n  
                                       instructions in the current group.  
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Superscalar Processor’s General Model 
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The total window size is limited by the required storage, the comparison, and a limited issue rate, 
which means large windows less helpful.  
 

The instruction window size (WS) directly limits the number of instructions that begin execution 
in a given cycle.  

 

In practice, real processors will have a more limited number of FUs, as well as limited number of 
buses, and register access ports, which serve as limits on the number of instructions initiated per 
clock. The maximum numbers of instructions that may issue begin execution, or commit in the 
same clock cycle is usually much smaller than the window size.  
 
 

Instruction Shelving  
 
Shelving //käsuladustus// decouples instruction issue and data dependency checking. This 
technique presumes special instruction buffers in front of the execution units.  
With shelving, instructions are issued first to the RS with essentially no need for dependency 
checks. Shelving delays dependency checking to later step of processing. During dispatching 
processor checks the instructions held in the RSs for data dependencies, and forwards dependency-
free instructions to available execution units.  
 
 
 

Deep Pipelines in Superscalar Processors  
 
A deeper pipeline increases the number of pipeline stages and reduces the number of logic gate 
levels in each pipeline stage. The benefit of deeper pipelines is the ability to reduce the machine 
cycle time and hence increase the clocking frequency.  
 

As pipelines get wider, there is increased complexity in each pipeline stage, which increases the 
delay of each pipeline stage. To maintain the same clocking frequency, a wider pipeline will need 
to be made even deeper.  
With a deeper pipeline the penalties incurred for pipeline hazard resolution can become larger.  
 

To ensure overall performance improvement with deeper pipeline, the increase in clocking 
frequency must exceed the increase in CPI.  

 

There are two approaches that can be used to mitigate the negative impact of their increased branch 
penalty in deep pipelines:  
 

1. With a mispredicted branch, all the instructions in the front-end pipeline stages must be 
flushed.  

2. The second approach is to move some of the front-end complexity to the back end of the 
pipeline => back-end optimizations (see figure and table).  
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                                          n=17 stages                                                 n=17 stages  
                                          BP = 12 stages                                            BP = 8 stages  
 
 
There is no longer the centralized control performed by the control path. Instead, a form of 
distributed control via propagation of the control signals through the pipeline stages is used.  
 Not only the data path is pipelined, but also the control path is pipelined.  
 The traditional data path and the control path are integrated into the same pipeline.  
 
 
 

Fetch
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Optimizations Types  
 

 
Optimization  

type  

 
Explanation  

 

Percentage of 
the total number 

of optimizing 
transforms 

 

High-level  
Procedure integration  
 

 

At the source level: processor independent  
Replace procedure call by procedure body  

 

 

Local  
Common sub-expression 
elimination  
Constant propagation  
 
Stack height reduction  
 

 

Within straight-line code*  
Replace two instances of the same computation by single 
copy  
Replace all instances of a variable that is assigned a 
constant with the constant  
Rearrange expression tree to minimize recourses needed 
for expression evaluation  
 

 
 
          18%  
 
          22%  

 

Global  
Global common sub-
expression elimination  
Copy propagation  
 
Code motion  
 
Induction variable elimination  
 
 

 

Across a branch  
Same as local, but this version crosses branches  
 
Replace all instances of a variable A that has been 
assigned X (i.e. A = X) with X  
Remove code from a loop that computes same value each 
iteration of the loop  
Simplify/eliminate array addressing calculations within 
loops  

 
 
          13%  
 
          11%  
 
          16%  
 
            2%  
 

 

Processor-dependent  
Strength reduction  
Pipeline scheduling  
Branch offset optimization  
 

 

Depends on processor knowledge  
Many examples, such as replace multiply by a constant 
with adds and shifts  
Reorder instructions to improve pipeline performance  
Choose the shortest branch displacement that reaches 
target  

 
 
 
 
 
 
 

 

• Straight-line coding //sirg- e lineaarprogramm// - a program (basic block) that is written 
to avoid the use of loops and branches, providing a faster execution time.  
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Superscalar Pipeline Models  
 
 
� Superscalar pipelines are parallel pipelines [A], in being able initiate the processing of 

multiple instructions in every machine cycle.  
� Superscalar pipelines are diversified pipelines [B] employing multiple and heterogeneous 

functional units in their execution stage.  
� Superscalar pipelines can be implemented as dynamic pipelines [C] in order to achieve the 

best possible performance without requiring reordering of instructions by the compiler.  

 
 A.  Parallel Pipeline (Superscalar Pipeline)  

No parallelism Temporal parallelism
k stages

1 2

k

1
2

k

Spatial parallelism 
k identical copies  

The degree of parallelism of a machine is measured by the maximum number of instructions that 
can be concurrently in process at one time.  
Temporal parallelism via pipelining requires less hardware than spatial parallelism, which requires 
replication of the entire processing unit.  

An example of the 6-stage parallel pipeline of width wp=3  

 

IF

I D

R D

E X

M E M

W B
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Parallel pipeline is a combination of pipelining and parallel processing.  
For parallel pipelines or superscalar pipelines the speedup is measured with respect to a scalar 
pipeline and is primarily determined by the width (wp) of the parallel pipeline.  
A parallel pipeline with width wp can concurrently process up to wp instructions in each of its 
pipeline stages.  
 
 

B.  Diversified Pipeline  
 
Diversified pipelines are parallel pipelines that have been specialized to process different 
instructions types.  
In parallel pipelines multiple different functional units (FU) are used in the execution portion 
stage. Instead of implementing p identical pipes in an p-wide parallel pipeline, in the execution 
portion of the parallel pipeline, diversified execution pipes can be implemented.  
 

 
The advantages in implementing diversified execution pipelines:  
 

1. Each pipe can be customized for a particular instruction type;  
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2. Each instruction type incurs only the necessary latency and makes use of all stages of 
an execution pipe;  

3. If all instruction dependencies between different instruction types are resolved prior to 
dispatching, the once instructions are issued into the individual execution pipes, no 
further stalling can occur due to instructions in other pipes.  

 

The idea of diversified pipelines is not new. The supercomputer CDC 6600 (1965) had 10 parallel 
diversified execution pipelines.  
 
 

C.  Dynamic Pipeline  
 
In any pipelined design, buffers are required between pipeline stages. The buffers hold all essential 
control and data bits for the instruction that has just traversed stage i of the pipeline and is ready to 
traverse stage (i+1) in the next machine cycle. Single-entry buffers are quite easy to control.  
In every machine cycle, the buffer’s current content is used as input to stage (i+1), and at the end 
of cycle, the buffer latches in the result produced by stage i. The buffer clocked each machine 
cycle. The exception occurs when the instruction in the buffer must be held back and prevented 
from traversing stage (i+1). In that case, the clocking on the buffer is disabled, and the instruction 
is stalled in the buffer.  
Instructions dynamic scheduling – the hardware rearranges the instruction execution to reduce 
the pipeline stalls. Dynamic scheduling offers several advantages:  
 

1. It enables handling some cases when dependencies are unknown at compile time;  
2. It simplifies the compiler.  

 

These advantages are gained at a cost of a significant increase in hardware complexity.  
In introducing out-of-order execution, it must be split the instruction decode pipeline stage into 
two stages:  

1. Issue – decode instructions, check for structural hazards;  
2. Read operands – wait until no data hazards, and then read operands.  

 

In parallel pipeline multiple buffers are needed between two consecutive pipeline stages.  
Multiple instructions can be latched into each multientry buffer in every machine cycle.  
In the next cycle, these instructions can traverse the next pipeline stage.  
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If all of the instructions are in a multientry buffer are required to advance simultaneously in a 
lockstep fashion, then the control of the multientry buffer is similar to that of the single-entry 
buffer. Each entry of the simple multientry buffer is hardwired to one write port and one read port 
of this buffer.  
The entire multientry buffer is either clocked or stalled in each machine cycle. Such operation of 
the parallel pipeline may induce unnecessary stalling of some of the instructions in a multientry 
buffer. Simple multientry buffer enhancements could be:  
 

� Adding special connectivity between entries to facilitate movement of data between entries.  
� Providing a mechanism for independent accessing of each entry in the buffer.  

 

Superscalar pipelines differ from scalar pipelines in one key aspect, which is the use of 
complex multientry buffers for buffering instructions in flight.  

 

In order to minimize unnecessary stalling of instructions in parallel pipeline, trailing instructions 
must be allowed to bypass stalled leading instructions.  

 

Such bypassing can change the order of execution of instructions from the original sequential order 
of the static code. With out-of-order execution of instructions, there is the potential of approaching 
the data flow limit of instruction execution.  
 

 
 

A dynamic pipeline achieves out-of-order execution via the use of complex multientry buffers that 
allow instructions to enter and leave the buffer in different orders.  

 
The execution portion of the dynamic diversified pipelines is usually bracketed by two reordering 
multientry buffers:  
 

1. The first buffer is the dispatch buffer.  
It is loaded with decoded instructions according to program order and then dispatches instructions 
to the functional units potentially in an order different from the program order.  

 

A parallel pipeline that supports out-of-order execution of instructions is 

called a dynamic pipeline.  
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2. The second buffer is the completion buffer (reorder buffer - ROB).  
It buffers the instructions that may have finished execution out of order and retires the instructions 
in order by outputting instructions to the final write-back stage in program order.  

The operation of the ROB is as follows:  
 

1. When an instruction is decoded, it is allocated an entry at the top of the ROB so that result 
value of this instruction can be written into the allocated entry it completes.  

2. When the value reaches the bottom of the ROB, it is written into the register file.  
If the instruction is not complete when its entry reaches the bottom of the ROB,  
the ROB does not advance until the instruction completes.  

 

Fetch Decode Rename
Issue 

Window
Wakeup 
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Register write and commit

 
Superscalar processor model without ROB  
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Superscalar processor model with ROB  
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 Example  
 
The 5-stage dynamic pipeline (wp=3) which has 4 execution pipes in execution stages which 
are bracketed by two reordering multientry buffers (Dispatch Buffer and Reorder Buffer)  
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 Example 2  
 

The typical (template for) superscalar 6-stage pipeline  
 

 
There are multientry buffers ( ) separating the six pipeline’s stages.  
The complexity of these buffers can vary depending on their functionality and location in the 
superscalar pipeline.  
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Dynamic Instruction Scheduling in Superscalar Processors  
 
The most straightforward way to improve the IPC of a modern superscalar processor is to increase:  
 

1. The instruction issue width (IW)  
Not all types of instructions can be issued together.  

2. The instruction window size (WS), [WS ≥ IW].  
 Restrictions  
 

a. The IW is restricted mainly by the clock speed.  
b. The WS is restricted by the number of permitted transistors.  
c. The delays of almost all components of a superscalar processor except execution units are 

increasing functions of IW and WS.  
 

 Dynamic instruction schedulers can be:  
 

1.  With data capture;  
2.  Without data capture.  

 

RGF

RGF

FUs FUs

Non-data-capturing  
scheduling window  

Register 
update 

Register 
update 

Operand copying

Forwarding 
and wake-up 

Wake-up 
Data captured 

scheduling window  
(Reservation Stations)  

Instruction scheduler with data capture  Instruction scheduler without data capture  
 

When instruction is dispatched, the operands                      The register read is performed after the  
that are ready are copied from the RGF                                instructions are being issued to the FUs.  
into the instruction window.                                                  At instruction dispatch there is no  
For the operands that are not ready, tags are                         copying operands into the register  
copied into the instruction window and used                        window, only tags for operands are  
to latch in the operands when they are                                   loaded into the window.  
forwarded by the FUs.                                                           The scheduler performs tag match to  
                                                                                               wake up ready instructions. All ready  
                                                                                               instructions that are issued obtain their  
                                                                                               operands directly from the RGF just  
                                                                                               prior to execution.  
 
Result forwarding and instruction                                      Result forwarding and instruction  
          wake up are combined.                                                          wake up are decoupled.  
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Example  
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Register Renaming and Reservation Stations  
 
 
The dynamic instructions scheduling scheme was invented by Robert Tomasulo. Superscalar 
processors include huge register sets, so register renaming and initial dependency checks are 
performed before instructions are issued to the FUs.  
 

Consider the 7-stage superscalar pipeline’s model for dynamically scheduled processor.  
Instructions are scheduled without data capturing, in pipeline the stages are connected in order:  

“Rename” (RS) => “Wakeup/Select” => “Register Read” => “Execute/Bypass” (RS).  
 

 
 Comment  
1. In the fetch stage, instructions are fetched from the instruction cache.  
2. Then instructions are decoded and their register operands renamed.  
3. Instructions in instruction window are free from control dependencies, and free from name 

dependencies.  
4. Next instructions are written into the reservation stations where they wait for their source 

operands and a functional unit to become available.  
 

Register renaming is a process whereby each new instruction is assigned a unique destination  
                                 register from a pool of physical registers.  
 

Register renaming is used to ensure each instruction is given correct operands and is done by 
dynamically mapping the logical (architectural) register numbers (names) used in program to 
processor’s internal physical registers.  
During register renaming processor removes false data dependencies (WAR, WAW) by writing the 
results of the instruction first into dynamically allocated rename buffers (ROB), rather than into the 
specified destination registers.  
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          Before renaming                    After renaming  
I1         ADD BX, AX                         ADD R2, R1    RAW!  
I2         MUL CX. BX                         MUL R3, R2    
I3         MOV BX, DX                        MOV R4, R5  
I4          ADD BX, #5                          ADD R6, #5  

 

The architectural destination register BX is renamed in instructions I1, I3 and I4.  
 

The number of physical registers can be greater than the number of architectural registers, allowing 
registers to be reused less often. The mapping from architectural to physical registers is very 
similar to the mapping of virtual to physical memory addresses.  
There are two main ways to implement the register renaming scheme in the superscalar processor:  
 

1. The first method provides a larger number of physical registers than the logical registers.  
2. The second method uses a reorder buffer (ROB).  

 
A common method to implement register renaming is to use a separate register rename file (RRF) 
or physical register file in addition to the architectural register file (ARF).  
In a typical load/store ISA an instruction may have up to one destination register (ARd or Dest) 
and up to two source registers (ARs1 and ARs2 or Src1 and Src2). The register names as used by 
the instruction refer to the architectural register name space.  
 

A straightforward way to implement the register renaming is to duplicate the ARF and use the 
RRF as a shadow version of the ARF. This will allow each architectural register to be renamed 
once, but this is not an efficient way to use the registers in RRF.  
An alternative is to use a mapping table to perform renaming of the ARF. The core renaming 
activity takes place in the register alias table (RAT). The RAT holds the current mapping of 
architectural to physical registers.  
Register renaming involves looking up a map table to pick up current mappings for architectural 
registers and, in parallel, true-dependence checking, followed by a modification of the mappings 
for source registers and that were produced by earlier instructions in the current rename group.  
 
 Generally renaming proceeds into two phases (A and B):  
 

A1.  Finding the current physical names PRs1 and PRs2 for the source  
        (architectural or logical) registers ARs1 and ARs2.  
A2.  Finding the current physical name PRd for the destination register ARd.  
 B.   Assigning a new physical register for the destination register ARd.  
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After registers are renamed, the instruction is dispatched into out-of-order processing core. This is 
accomplished by establishing the entries for the instruction in two queues: the issue queue (IQ) and 
the ROB. The IQ is also known as the dispatch buffer or the reservation stations in distributed 
implementation.  
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When a separate RRF is used for register renaming, there are implementation choices where to 
place the RRF – stand-alone RRF or incorporated into ROB RRF.  
In both options a busy field (B) is added to the ARF along with mapping table.  
If the busy field of selected entry of the ARF is set (B:=1), indicates that the architectural register 
has been renamed, the corresponding entry of the map table is associated to obtain tag or pointer to 
the RRF entry.  
If the RRF is in the ROB, then the tag specifies entry in a reorder buffer (ROB).  
If the RRF is incorporated as part of the ROB, then every entry of the ROB contains an additional 
field that functions as a rename register.  
 

Register operand fetch possibilities are:  
 

1.  The architected register contains specified operand (B=0).  
  The operand is fetched from the ARF.  
 

2. The operand is result from some previous instruction and the content of the architected  
      register is stale (B=1). The corresponding entry of the map table is accessed to retrieve the  
      rename tag. The rename tag is specifies a rename register and used to index the RRF.  
 
 

RRF indexing possibilities are:  
 

1. The register updating instruction has finished execution (V=1). It is waiting to be  
 completed. The operand is available in the rename register and is retrieved from the  
 indexed RRF entry.  
 

2. The register updating instruction has not been executed (V=0). The rename register has a  
pending update. The map table tag is forwarded to the reservation station instead of source 
operand. The tag is used later by the RS to obtain operand when it becomes available.  

 
 

Destination allocation has three subtasks:  
 

1. Set a busy bit (B) ;  
2. Assign tag;  
3. Update map table.  

 
The task of register update takes place in the back end of the machine. It does not have direct 
impact on the operation of the RRF.  
 
���� When a register-updating instruction finishes execution, its result is written into the entry of 

the RRF indicated by the tag.  
���� When this instruction is completed its result is copied from the RRF into the ARF.  
 

Once rename register is copied to its corresponding architectural register, its busy bit is reset (B=0) 
and it can be used again to rename another architectural register.  
The ROB allows instructions to complete only in program order by permitting an instruction to 
complete only if it has finished its execution and all preceding instructions are already completed.  
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An advantage of the register renaming approach is that instructions commitment is simplified, 
since requires only two actions:  
 
a. Record that the mapping between an architectural register number and physical register 

number is no longer a speculative;  
b. Free up any physical registers being used to hold the “older” volume of the architectural 

register.  
 
A physical register corresponds to an architectural register until the architectural register is 
rewritten.  
Most high-end superscalar processors have chosen to use register renaming, adding from 20 to 80 
extra registers. These extra registers replace a primary function of the ROB.  
 
 
 
 REM  
 

1. The physical registers contain values of completed but not yet retired instructions.  
2. The architectural registers store the committed values.  
3. After committing of an instruction, copying its result from the physical register to the 

architectural register is required.  
 
 
 

The Different Ways to Implement Register Renaming  
 
The main renaming choices are:  
 

1. Using a merged architectural and rename registers;  
2. Employing a stand alone rename register file;  
3. Keeping renamed values in the reorder buffer;  
4. Keeping renamed values in the shelving buffers.  
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Rename Table
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New Dest

LD  R1, Op(R3)
ADD R3, R1, #7f    (Step 2)
SUB R6, R7, R6
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Rename Table
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SUB R6, R7, R6    (Step 3)
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V1, V2 - v alid, operand OP1 or OP2 is v alid; 

OC - opcode of instruction; 

Tag - the pointer to the entry in the ROB in w hich the result of instruction w ill be w ritten. 

V - v alid, w hen true then it s ignifies that the Result Value fie ld holds a v alid result; 

F - the flag, w hen true then it signifies that the this ROB entry is  v alid; 

Rd* - the identifier of the allocated rename register. Corresponds to the entry in the mapping table. 

Rs1, Rs2 - the source registers (Rs1, Rs2) w hich should be renamed; 

Rs1*, Rs2* - the identifiers of the allocated rename registers (Rs1*, Rs2*). 
 

Mapping Table 

Reservation S tations (RS) 

Rename Register 
File (RRF) 

Architectural 
Register File 

 (ARF) 

EU

Reorder Buffer 
(ROB) 

Tag 

Tag 

OC 

Rd, Rs1, Rs2 

Update 
RS

Update RRF

Rd*

Rd*Rd*OC 

Rs1*

Rs2*

Update 

OP1

OP2OP2/Rs2*

OP1/Rs1*

OP1/Rs1*, V1 OP2/Rs2*, V2

OC, Rd*, OP1, OP2 

Instruction 
Address 

F Rd* Result value V

Bypassing 

Issue 

Dispatch

Decoded Instruction

Result Rd* 

Rs1, Rs2 
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Reservation Stations  
 
 
The basic idea is that a reservation station fetches and buffers an operand as soon as it available, 
eliminating the need to get the operand from a register.  
A RS can potentially support multiple instruction issues per cycle.  

 

o When an instruction completes execution and produces a result, the result’s name is 
compared to the operands names in the RS.  

o If an instruction is waiting for this result in the RS, the data is written into the 
corresponding position and its availability indicator is set (V=1).  

o When during dispatch an instruction is placed into the RS, all available operands 
from the register file are copied into this instruction’s field.  

o When all operands are ready, the instruction is executed.  
 

After instruction completes execution, it waits in the reservation stations until all earlier 
instructions have completed execution. After this condition is satisfied, instruction is committed.  
 
 
 

Instruction Scheduling Apparatus  
 
 

The dynamic instruction scheduler consists of:  
 

A. Instruction Window (Reservation Stations) and Reorder Buffer  
B. Instructions Wake-up Logic  
C. Instructions Select Logic  

 
 

Instruction Window (Reservation Stations) and Reorder Buffer  
 
After an instruction is fetched, decoded and reordered, it is written into a reservation station entry 
(RSE). There are two types of reservation stations (RS):  
 

1. Centralized reservation stations (dispatch buffer) (fig. B);  
 A single buffer is used at the source side of dispatching.  
2. Distributed reservation stations (fig. A, C).  

   Multiple buffers are placed at the destination side of dispatching.  
 
A centralized RS allows all instruction types to share the same reservation station.  
 

Distributed RSs can be single ported buffers, each with only small number of entries.  
Reservation stations idling entries cannot be used by instructions destined for execution in other 
functional unit.  
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Distributed and Centralized Reservation Stations  

FU

FU FU

FU FU

FUFU

FU

FU

FU FU FU

Dispatch buffer 

Completion buffer 

Completion buffer 

Dispatch

Issue 

Execute 

Finish 

Complete

Finish 

Complete

Dispatch & 
Issue 

A. 

B. 

Distributed 
reservation 

stations 

Execute 

Centralized reservation station 
(Dispatch buffer) 
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Dispatching implies the associating of instruction types with functional unit types after 
instructions have been decoded.  
Issuing means the initiation of execution in functional units.  
 

� With a centralized reservation station, instruction dispatching and instruction issuing 
occur at the same time.  
With a centralized reservation station, the dispatching of instructions from the 
centralized reservation station does not occur until all their operands are ready.  

� In a distributed reservation station these two events occur separately. Instructions are 
dispatched from the centralized decode/dispatch buffer to the individual RSs first, and 
when all their operands are available, then they are issued into the individual functional 
units for execution.  

 

C.  

Register File

FU1 FUn 

Result Bus

Tag Bus 

Select 

Logic

Select 

Logic
RS1 RSn

RSE1
RSE1

RSEm RSEm

m

Reorder Buffer 

Dispatch 
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Reservation Station Entries  
 
Typically the dispatching of an instruction requires three steps:  
 

1. Select a free RS entry;  
2. Load operands and/or tags into the selected entry;  
3. Set the busy bit of that entry.  

 

Each reservation station entry contains information about each of the instruction’s sources, 
whether the source is ready and the number of cycles it takes producer of the source’s value to 
execute.  

B V V ROperand 1 (OP1) Operand 2 (OP2) 

Forwarding buses Forwarding busesDispatch slots Dispatch slots

Tag buses Tag buses

Tag match Tag matchComparator Comparator

RSE

 

SRC tag  –  source operand tag;  
M (match)  –  match when the destination tag of parent is broadcast and the tag comparator indicates  
                      that a match occurred;  
Shift  –  on a tag match , the Shift field is loaded with the value contained in the Delay field.  
R (ready)  –  this bit for each source is set if the data for that source is available in the register file or is  
                      available for bypass from functional unit;  
Delay  –  because not all instructions have the same execution latency, the number of cycles between  
               the time their tags are broadcast and the time their results are available is not constant. DEST tag  
–  the destination register tag.  
 

When a RSE is waiting for a pending operand, it must continuously monitor the tag bus.  
When a both operand fields (M, R) are valid, then it is referred to as instruction wake up.  
 
 

Instruction Wakeup Logic  
 

The wakeup logic is responsible for waking up the instructions that are waiting for their source 
operands to become available. The wakeup logic sends the select logic a vector indicating which 
instructions are ready for execution.  

SRC tag M Shift R Delay SRC tag M Shift R Delay DEST tag

Reservation Station Entry (RSE)
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For pipelined scheduling with speculative wakeup, it is accomplished by monitoring each 
instruction’s parents and grandparents. The wakeup logic is a part of reservation stations.  
 

Conventional Wakeup Logic  

 
 

Instructions Select Logic  
 
The select logic chooses instructions from the pool of ready instructions marked in a Request 
Vector. The select logic outputs a vector indicating the selected instructions which in turn becomes 
the input to the wakeup logic in the next clock.  
 

Scheduling (wakeup+select) logic loop:  
 

Wakeup and select logic form a critical loop. If this loop is stretched over more than one cycle, 
dependent instructions cannot execute in consequtive cycles.  
Instructions that are ready to be scheduled in the current clock cycle produce results which are fed 
to dependent instructions that must be scheduled in the following clock cycle.  
Each functional unit (FU) has a set of dedicated RSEs. Select logic associated with each FU selects 
the instruction that the FU will execute next.  
After an instruction is selected for execution, several cycles pass before it completes execution. 
During this time, instructions dependent on it may be scheduled for execution.  
 

In a superscalar processor, a group of instructions must be reordered at the same time.  
All the ready instructions are identified by their ready (R) bits. If more than one instruction 
requests execution, heuristics may be used for choosing which instruction receives grant.  
The heuristics can be based on program order or how long each ready instruction has been waiting 
in the reservation station (RS).  

Tag m

Tag1 

Destination tag Bus 

=

= OR Delay

Shift RMSRC tag 

load

shift

Source is ready
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The inputs to the select logic are the request signals from each of the FU’s RSEs, plus additional 
information needed for scheduling heuristics such as priority information.  
Because instructions cannot wakeup until all instructions they are dependent on have been selected, 
the wakeup and select form a critical loop. Generally, wakeup and select together constitute an 
atomic operation that is if they divided into multiple pipeline stages, dependent instructions cannot 
execute in consecutive cycles.  
 
 

I Scheduling with Dependent Instruction Execution  
 
An instruction wakes up in the last half of a clock cycle, and is potentially selected in the first half 
of the next clock cycle.  
If the instruction is selected, the Grant Vector from the select logic gates information’s destination 
tag onto tag bus, which is then fed to the tag comparators of the wakeup logic.  
The tasks selection, tag broadcast, and wakeup must all occur within in one cycle.  
 

I1

I2

I3

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Wakeup

Wakeup

Wakeup

Wait

Wait Wait

Select/

Broadcast

Select/

Broadcast

Select/

Broadcast

Reg read

Reg read

Reg read

Execute/

Bypass

Execute/

Bypass

Execute/

Bypass

Conventional Wakeup 

 

The schedule scheme assumes that each instruction has one-cycle latency. 
 
 

II Scheduling with Speculative Wakeup  
 
Instructions could be speculatively executeded with the aid of data value prediction mechanism 
while the operands of the instruction are not ready.  
If the parents of an instruction’s parent (grandparents) have been selected, then it is likely that the 
parent will be selected in the following cycle.  
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I1

I2

I3

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Wakeup

WakeupWait

Wait

Select/

Broadcast

Select/

Broadcast

Reg read

Reg read

Execute/

Bypass

Execute/

Bypass

Wakeup
Select/

Broadcast
Reg read

Execute/

Bypass

Cycle 5

Speculative execution 

Speculative Wakeup 

 
For scheduling logic pipelined over 2 cycles, the child can assume that when the tags of the grand 
parent pair have been received, the parent (I2) is probably being selected for execution and will 
broadcast its tag in the following cycle.  
The child can (I3) then speculatively wakeup and be selected the cycle after its grand parent (I1) is 
selected.  
 
 

Load Bypassing and Load Forwarding  
 
There are two techniques for early out-of-order execution of loads – load bypassing //laade 

möödumine// and load forwarding //laade ettesuunamine//.  
 

Load bypassing (a) allows a load to be executed earlier than proceeding stores if the  
load address does not alias //samanimesus// with the preceding stores.  
Load forwarding (b) allows the load to receive its data directly from the store without  
having access the data memory.  
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Reservation S tation 

(Finished) 
S tore buffer 

(Completed) 
S tore buffer 

Data Address

Match / No match 

Data Cache 

LOAD FORWARDING

If match: 

Forward to desstination register

LOAD BY PASSING

If no match: 

Update destination register

Match

Address Generation 

Address Translation 

Address Generation 

Tag match

Address Translation 

Data Address

S tore 
Unit 

Load 
Unit 

 
 
The execution core responsible for processing load/store instructions has one store unit and one 
load unit. Both are fed by a common reservation station.  
We assume that load and store instructions are issued from the RS in program order.  
The store buffer operates as a queue and has two portions – finished and completed.  
 

� The finished portion contains those stores that have finished execution but are not yet 
architecturally completed.  

� The completed portion of the store buffer contains those stores that are completed 
architecturally but waiting to update the memory.  

 
When a finished store is completed by the ROB, it changes from the finished state to the 
completed state. A store (instruction) does not really finish its execution until it is retired.  
Key issue in implementing load bypass is the need to check for possible aliasing with preceding 
stores.  
 
The load forwarding enhances and complements the load bypassing technique.  
 

To support load forwarding added complexity to the store buffer is required.  
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Instruction Execution Phase  
 

Execution Units Mix  
 

The instruction frequencies of each type of instruction determine the optimal number of execution 
units (FU) of each type:  

 pi – probability that any instruction is of type i (depends on what program is running);  
IW – superscalar width;  
IW×pi – average number of instructions of type i in fetch group;  
ni – the number of execution units (FU) for instruction type i.  

The total number of execution units (FU) is equal to:  

IWpIWn
i

i
i

i
≅∑×∑ f ;    ni > IWi   

The total number of execution units must be larger than the superscalar width.  
 
 Functional units’ latencies  
 

Issue latency – minimum number of clock cycles between the issuing of an instruction to  
                             a FU and the issuing of the next instruction to the same FU.  
Result latency – number of clock cycles taken by a FU to produce a result.  
 

   Typical Functional Unit Latencies  

 

Functional Unit  
 

 

Issue latency  
 

 

Result latency  
 

 

Integer ALU  
 

 

1 
 

 

1 
 

 

Integer Multiply  
 

 

1 
 

 

2 
 

 

Load (on hit)  
 

 

1 
 

 

1 
 

 

Load (on miss)  
 

 

1 
 

 

40 
 

 

Store  
 

 

1 
 

 

— 
 

 

FP Add  
 

 

1 
 

 

2 
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1 
 

 

4 
 

 

FP Divide  
 

 

12 
 

 

12 
 

 

FP Convert  
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1 
 

 

2 
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Superscalar Processor Performance Degradation due to Dependencies  
 

 

 
 

 

 
 

Scalar  
Processor  

 

 

 
Superscalar  
Processor  
without  

dependencies  
 

 

Superscalar  
Processor  

with false data 
dependencies 
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Superscalar Processor Performance Improvement with Dependencies Resolution  
 

 

 
 

 

Register renaming  
 

 

Branch Prediction  
 

 

Shelving  
 

 

Instruction 
Window size – 8  

 

 

21885  

 

 

24500  

 

 

28958  

 

 

Instruction 
Window size – 16  

 

 

22736  

 

 

25723  

 

 

30393  

 

 
The renaming eliminates completely the false data dependencies and improves the performance 
with about 25%.  
The branch prediction provides 90% accuracy and improves the performance with about 28%.  
The shelving provides full speed of the processor despite of the presence of true data dependencies 
and improves its performance with about 25%.  
 
 
 

Misprediction Recovery in a Superscalar Processor  
 
A single branch misprediction may flush upwards of 100 in-flight instructions, causing extended 
retirement stalls as the pipeline gradually fills. Because of the large per-instruction penalty, branch 
misprediction rates of 5-10% cause a disproportionate performance loss. Methods for dealing with 
branch misprediction vary, but all must prevent the predicted instructions from permanently 
modifying the register file until the outcome of the branch is known.  
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There are two main approaches to implement the correct behavior control speculation.  
 

1. The first mechanism that relay on taking snapshots, or checkpoints, of the processor state at 
appropriate points and reverting back to the corresponding snapshot when a control mis-
speculation is detected.  

2. The second approach involves mechanism that reconstruct the desired state by sequentially 
processing the in-flight instructions in program order until a deviation from the program 
order is reached.  

 

When a branch misprediction is detected in a superscalar processor, the processor performs a series 
of steps to ensure correct execution.  
Typically, branch misprediction recovery requires stalling the front-end processor, repairing the 
architectural state, and restarting the process of fetching and renaming instructions from the correct 
path.  
Instructions after the mispredicted branch are squashed and all resources they hold are freed. In 
addition, the mapping of physical registers is backed up to the point of the mispredicted branch. 
The instruction fetch unit is also backed up to the point of the mispredicted branch and the 
processor begins sequencing on the correct path.  
 
Recovery may proceed as follows:  
 

1. After a branch misprediction is discovered, the first control independent  
        instruction must be found in the instruction window. It is the reconvergent  
        point //taastepunkt//.  
2. Instructions are selectively squashed //kõrvaldatavad//, depending on whether they  
      are incorrect control dependent instructions or control independent instructions.  
      Squashed instructions are removed from the window and any resources they hold  
      are released.  
3. Instruction fetching is redirected to the correct control dependent instructions, and  
      new instructions are inserted into the instruction window which may already  
      hold subsequent control independent instructions.  
4. Based on the new, correct control dependent instructions, data dependences must  
      be established with the control independent instructions already in the window.  
      Any modified data dependences cause already-executed control independent  
      instructions to be reissued with new data.  
      This step is called the redispatch sequence //uuesti jaotatud järjestus//.  
 
 

 
 
 



 213

Finalizing Instruction Execution  
Instruction Completion, Commitment and Retirement  

 
 

In a distributed RS machine, an instruction can go through the following phases:  
 

Fetch => Decode => Dispatch => Issue => Execute => Finish => Complete => Retire  
                               In centralized RS machine one phase  
 

� Instruction finishes execution //käsk on töödeldud// when it exits the FU and enters 
completion buffer.  

� An instruction is completed //lõpetatud// when the functional unit is finished the 
execution of the instruction and the result is made available for forwarding or buffering.  

� Instruction committing //püsitatud// means that the instruction results have been made 
permanent and the instruction retired from the instruction scheduler.  

 

  A result is made permanent //püsitulem// by:  
 

 a.  Making the mapping of architectural to physical register permanent  
 b.  Copying the result value from the rename register to the architectural register  
 

Only the architectural registers are renamed. The RRF can be a separate stand-alone structure 
similar to the ARF or it is incorporated into the reorder buffer.]  
 

� Instruction retiring //erustatatud// means instruction removal from the instruction 
scheduler with or without the commitment of operation results.  

 
 
 

Reorder Buffer and Instruction Retirement  
 
The ROB keeps the original program order of the instructions after instructions issued and allow 
result serialization during the retire stage.  
The ROB contains all the instructions that have been dispatched, but not yet completed.  
The typical implementation of an ROB is in the form of a multiported register file.  
In m-way superscalar machine, where physical registers are implemented as slots within the ROB 
entries, the ROB has following ports:  
 

1. At least 2m read ports for reading source operands for each of the m instructions 
dispatched/issued per cycle.  

2. At least m write ports to allow to s functional units to write their result into the ROB slots 
acting as physical registers in one cycle.  

3. At least m read ports allow up to s results to be retired into the ARF per cycle.  
 

The status of each instruction in the ROB is tracked by using instruction state bits in every entry of 
the ROB.  
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Typical ROB entry fields  

Busy 
(B)

Issued
(I)

Finished 
(F)

Instruction 
Address 

(IA)

Rename 
Register 

(RR)

Speculative 
(S)

Valid 
(V)

 
An instruction can be in one of several states: waiting execution, in execution, and finished 
execution. The status bits are updated as an instruction traverses from one state to the next.  
A special bit (S) is used to indicate whether an instruction is speculative or not.  
If speculation can cross multiple branches, additional bits can be employed to identify which 
speculative basic block an instruction belongs to. When a branch is resolved, a speculative 
instruction can become nonspeculative or invalid.  
 

Only finished and nonspeculative instructions can be completed.  
 

When an instruction is completed, the state is marked in its ROB entry. When a program interrupt 
occurs, the exception is marked in the ROB entry (not depicted on the figure).  
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YES
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NO
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destination

Physical 

destination 
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R18
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The ADD instruction writes result to register R3, which has been mapped to architectural register 
AX. The subtract instruction SUB writes result to register R6, which has been mapped to 
architectural register BX.  
The conditional jump instruction JNZ does not write to register.  
At the right the RAT maintains a list of the physical registers holding the most recent committed 
in-order results for each architectural register.  
When the ADD instruction completes execution, as the oldest instruction, it is allowed to retire.  
The ROB oldest pointer is incremented to show that the most recent committed results for  
AX are stored in register R3.  
Upon execution of the conditional jump (JNZ), it is discovered to have been mispredicted.  
The jump is now the oldest entry in the ROB, and it is allowed to retire.  
When SUB retires its result is discarded because the early retired jump instruction was 
mispredicted. The RAT is not updated and the latest committed results for BX are still in register 
R18.  
The registers used by the subtract instruction will be recycled for use by other instructions.  
The result the subtract instruction will be overwritten without ever having been read.  
 
There are several different implementations of the ROB.  
 
Often the ROB is implemented as a circular FIFO buffer with a head pointer and a tail pointer.  
The tail pointer is advanced when ROB entries are allocated at instruction dispatch.  
The number of entries that can be allocated per cycle is limited by the dispatch bandwidth. 
Instructions are completed from the head of the queue.  
Reorder buffer entries are allocated in the first issue stage and deallocated serially when the 
instruction retires.  

 
During the retire stage a number of instructions at the head of the FIFO queue are scanned and an 
instruction committed if all previous instructions are committed or can be committed in the same 
cycle.  
In the case of instructions that are on a misspeculated path, the instructions are removed from ROB 
and the physical registers freed without making the result permanent or copying back results.  
When an instruction is completed its rename register and its reorder buffer entry are deallocated.  
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Typically the processors`s retire bandwidth is the same as the issue bandwidth.  
 

The reorder buffer (ROB) accomplishes the following operations:  
 

1. Allocate:  The dispatch stage reserves space in the reorder buffer for instructions in program order.  
2. Wait:  The complete stage must wait for instructions to finish execution.  
3. Complete:  Finished instructions are allowed to write results in order into the architectural  
                           registers.  
 
 
 

Store Buffer  
 
Store instructions are processed differently than Load instructions.  
Unlike a Load instruction, the data for Store instruction are kept in the ROB. At the time when the 
Store is being completed, these data are then written out to memory. The reason for this delayed 
access to memory is to prevent the premature and potentially erroneous update of the memory in 
case the Store instruction may have to be flushed.  
For Store instruction it is possible to move the data to the Store buffer at completion.  
The purpose of the Store buffer is to allow stores to be retired when the memory bus is not busy. 
This is giving priority to Load instruction(s) that needs to access to the memory.  
 
 
 

Comparison of 5-stage Scalar and Superscalar Pipelines  

 

Pipeline Stage 
 

 

Scalar Processor  
 

Superscalar Processor  
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Fetch one instruction  
 

Fetch multiple instructions  

 

 
Decode  

 

 

1. Decode instruction  
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3. Copy operands to functional unit  
    input latch  

 

1. Decode instructions  
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     register file and reorder buffer (ROB)  
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2. Arbitrate for result buses  
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Performance (IPC) for Superscalar Architecture  
 

Superscalar processors with parallel pipelines complete many instructions every clock cycle.  

If there are s parallel pipelines which do not stall, then s instructions can complete every clock 
cycle.  
When stalls occur, the superscalar processor may still be able to complete a smaller number of 
instructions (from (s-1) to zero).  
 

 IPC(c) – the number of instructions completed during clock cycle c.  
 

s ≥ IPC(c) ≥ 0  
 

The average IPC can be determined from  
 

IPC = ∑
cc

cIPC
N

)(
1

,   where  

Nc - is the total number of clock cycles.  
 

The complexity of superscalar processor usually makes it very difficult to calculate IPC(c) with 
simple formulas. Simulation of the hardware running a set of benchmark programs is usually used.  
 
 
 

Superscalar Processor Summary  
 

Superscalar processors are distinguished by their ability to issue multiple instructions each 
clock cycle from a conventional instruction stream.  

 
 Superscalar Pocessor’s Main Features  
 

1.  Instructions are issued from a sequential stream of normal instructions.  
2.  The instructions that are issued are scheduled dynamically by the HW  
3.  More than one instruction can be issued each instruction cycle.  
4.  The number of issued instructions is determined dynamically by HW.  
5.  The dynamic instruction issue complicates the HW scheduler of a superscalar processor.  
6.  It is a presumption that multiple functional units are available. 
7. The superscalar technique is a microarchitecture technique, not an architecture technique.  
8.  Instruction pipelining and superscalar techniques both exploit fine-grain parallelism.  
 
 
 Comment  
At least two circumstances limit the superscalar processor efficiency:  
 

1. The degree of the ILP;  
2. The complexity of a superscalar processor increases as the same rate, and even faster, as 

the number of concurrently executed instructions.  
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Doubling issue rates [in modern superscalar processors] above today’s 3-6 instructions 

per clock, says to be 6-12 instruction, probably requires a processor to:  

� Issue 3 or 4 data memory accesses per cycle;  

� Resolve 2 or 3 branches per cycle;  

� Rename and access more than 20 registers per cycle;  

� Fetch 12 to 24 instructions per cycle.  
 

                                                                                              David Patterson  
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First-, Second- and Third-Generation Superscalar Processors  

 

First Generation  
 

 

Second Generation  
 

 

Third Generation  
 

Issue width  

 
2-3 RISC instr./cycle or  

2 CISC instr./cycle  

 
4 RISC instr./cycle or  

3 CISC instr./cycle  

 
4 RISC instr./cycle or  

3 CISC instr./cycle  

Processor core  features  
 

No predecoding  
 

Predecoding  
 

Predecoding  
 

Static branch prediction  
 

Dynamic branch prediction  
 

Dynamic branch prediction  
 

Direct issue  
 

Dynamic instr. scheduling  
 

Dynamic instr. scheduling  
 

Blocking execution of 
unresolved conditional 

branches  

 

Speculative execution of 
unresolved conditional 

branches  

 

Speculative execution of 
unresolved conditional 

branches  
 

No renaming  
 

Renaming  
 

Renaming  
 

No reorder buffer  
 

Reorder buffer  
 

Reorder buffer  
 

No out-of-order loads  
 

Out-of-order loads  
 

Out-of-order loads  
 

No store forwarding  
 

Store forwarding  
 

Store forwarding  

Cache subsystem features  
 

Single ported data cache  
 

Dual ported data cache  
 

Dual ported data cache  
 

Blocking L1 data caches or 
non-blocking caches  

 

Non-blocking L1 data caches 
with multiple cache misses 

allowed  

 

Non-blocking L1 data caches 
with multiple cache misses 

allowed  
 

Off-chip L2 caches attached 
via the processor bus  

 

Off-chip direct coupled L2 
caches  

 

On-chip L2 caches  
 

Instruction Set Architecture features  
 

No multimedia and 3D 
support  

 

No multimedia and 3D 
support  

 

FX- and FP-SIMD 
instructions  

Examples  
 

Alpha 21064, PA 7100, 

Power PC 601, Pentium  
 

 

Alpha 21264, PA 8000, 

Power PC 620, Pentium Pro  
 

 

Power 4, Pentium III, 

Pentium 4, Athlon MP (m 6)  
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RISC ARCHITECTURE**  
 
 

CISC – Complex Instruction Set Computer  
RISC – Reduced Instruction Set Computer  

//kärbikprotsessor//  
 
Term RISC was first used by David Patterson in 1980 (Berkeley Stanford University).  
 

Design target:  
max P,  
min C.  

 
Basic (classical) RISC architecture versions:  

 
University of California at Berkeley (David Patterson)  

RISC I (1982) [44420 transistors; 32 instructions; 5µm NMOS; 1 MHz; die area 77mm2]  
RISC II (1983) [40760 transistors; 39 instructions; 3µm NMOS; 3 MHz; die area 60 mm2]  

 
Stanford University (John Hennessey)  

MIPS (1981)  
  MIPS – Microprocessor without Interlocked Pipeline Stage  

Predecessor - IBM 801 (1979)  
 
IBM 801 was a high-performance minicomputer which was never marketed; it was designed  
by John Cocke.  
 

IBM 801 architecture main features:  
 

1. The trivial instruction set (RISC-like),  
2. HLL orientation (special compiler),  
3. HW control,  
4. One instruction per clock cycle,  
5. 32-bit CPU with 32 registers,  
6. ECL-technology.  

 
 

RISC architecture development - 80/20 Rule  
 
Increases in architectural complexity catered to the belief that a significant barrier to better 
computer performance is the semantic gap – the gap between the meanings of high-level language 

statements and the meanings of machine-level instructions.  
The studies for CISC computers show that:  
 

1.  About 80% of the instructions generated and executed use only 20% of an instruction set.  
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Conclusion 1  
 
 If this 20% of instructions is speed up, the performance will be greater.  
 

2. Analysis shows that these instructions tend to perform the simpler operations and  
       use only the simple addressing modes.  
 
 Conclusion 2  
 
If only the simpler instructions are required, the processor hardware required to implement them, 
could be reduced in complexity.  
It should be possible to design a more performance processor with fewer transistors and less cost.  
 
 Conclusion 3  
 
With a simpler instruction set, it should be possible for a processor to execute its instructions in a 
single clock cycle and synthesise complex operations from sequences of instructions.  
 
 
 

RISC Architecture Main Principles  
 

1. An efficient system operation can be attained if all instructions take the same number of 
cycles for the fetch and execution stages in the pipeline.  

 

2. If the above take a single clock cycle, the operation will be the speediest for given 
technology.  

 

3. We have to achieve uniform, single-cycle fetch, decode, execute, etc. operations for each 
instruction implemented on the processor.  

 

4. A single-cycle fetch can be achieved by keeping all instructions at a standard size (32 bit).  
 

5. The standard instruction size should be equal to the basic word length of the processor. 
Uniform word-width instructions simplifying instructions prefetching and eliminate 
complications that arise from instruction crossing word, block, or page boundaries.  

 

6. Achieving same time duration execution of all instructions is much more difficult than 
achieving a uniform fetch.  

 

7. Which instructions should be selected to be on the reduced instruction list?  
The most often executed instructions are data moves, arithmetic and logic operations.  

 

8. The general support of HLL.  
This consideration supports the reduction of the semantic gap between the processor design 
and the HLLs.  
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9.  The procedure call-return is the most time-consuming operation in typical HLL programs.  
The percentage of time spent on handling local variables and constants turned out to be 
highest, compared to other variables.  

 

10.  It must be minimized as much as possible the number of instructions that have to access  
 memory during the execution stage.  

 

a. Memory access, during the execution stage, is done by  
                              LOAD and STORE instructions only.  

b. All operations, except LOAD and STORE, are  
register-to-register, within the processor.  

c. Systems featuring these rules are said to be adhering to  
a load/store memory access architecture.  

 

11.  Uniform handling of instructions can be achieved by using hardwired control.  
  

12. The central processor unit is provided with a large register set (register file).  
 

13. RISC architecture exploits ILP in the instruction pipeline. As a rule, the instruction pipeline 
is supported by advanced cache memory system.  

 
The original MIPS, SPARC and Motorola 88000 CPUs had classic scalar RISC pipelines, 
which contained five pipeline stages:  

 
1. Instruction fetch;  
2. Decode;  
3. Execute;  
4. Access;  
5. Write back. 

 
The general RISC instruction format  

 

Operation Destination register S ource register 1 S ource register 2

031

 
 

14.  Exceptions (interrupts) have a great influence to the RISC processor pipeline’s productivity.  
The most common kind of software-visible exception on one of the classic RISC processor  
is a TLB miss. Exceptions are different from branches and jumps, because branches and jumps 
which change a control flow are resolved in the decode stage.  
 

Exceptions are resolved in the writeback stage.  
 

When an exception is detected, the following instructions in the pipeline are marked as 
invalid, and as they flow to the end of the pipe their results are discarded. The program 
counter is set to the address of a special exception handler.  
The exceptions handling is based on the precise exception model.  
A precise exception means that all instructions up to the excepting instruction have been 
executed, and the excepting instruction and everything afterwards have not been executed.  
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The First Generation RISC Microprocessors  

     
       Model  

 
   Instructions    

  
   Addressing  
       modes  

     Different  
      types of  
   instructions  

 
  Register file  
         size  

                                                          Experimental  

    RISC II           39             2            2          138  

    MIPS           31             2            4            16  

 (IBM 801)         120             3            2            32  

                                                            Industrial  

 Acorn ARM            44             2           6            16  

IBM ROMP          118             2           2            16  

HP 3000/930          140             2           2            32  

   Motorola   
     88100  

        
          51  

      
         3 (4*)  

        
         2  

        
          32  
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Clocking logic Decoder
Other signals 
from the ALU 

Control 
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n
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external 
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PCinPCout ADD SUB Wait
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Generated control signals to the different functional units of  CPU

Perloadable 
code 
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The Second Generation RISC Microprocessors  
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MIPS 
 

 

CPU 
 

 

MC88100 
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R3000 

 

FPU 
 

 

on CPU 
 

on CPU 
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R3010 

 

Clock (MHz) 
 

 

20 
 

40 
 

33 
 

25 

 

Registers in CPU 
 

 

32 
 

32 
 

136 
 

32 
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IC-16 kB 
DC-16 kB 
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DC- 8 kB 

CY7C604 
64 kB 

external 
IC-256 kB 
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MMU 
 

 

MC88200 
 

on CPU 
 

CY7C604 
 

on CPU 

 

CPU bus bandwidth (MB/s) 
 

160 
 

960 
 

133 
 

200 
 

Memory bandwidth (MB/s) 
 

64 
 

160 
 

266 
 

100 
 

The instructions number 
 

51 
 

65 
 

89 
 

74 
 

Peak throughput (VAX-MIPS) 
 

17 
 

33 
 

24 
 

20 
 

Technology (CMOS) 
 

 

1,2 
 

1,0 
 

0,8 
 

1,2 

 

Cost per MIPS 
 

 

65 
 

23 
 

53 
 

10 
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Examples of the Second Generation RISC Microprocessors  
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Motorola 88000  

source 1
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3-stage 
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The Third Generation RISC Microprocessors  
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Toshiba 
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7 

 
5 
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8 
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32 
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IC – 16 
DC – 16 
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70 
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70 
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77 
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96 
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RISC versus CISC  
 

  
Advantages 

 

 
Disadvantages 

 

 
 
 
 
 
 
 CISC  
 
 

 
1. Microprogramming is less 

expansive than hardwiring  
      a control unit.  
2. The ease of microcoding 

instructions allows making 
CISC computers upwardly 
compatible.  

3. Fewer instructions could be 
used to implement a given task.  

4. More efficient use of the 
relatively slow main memory.  

5. The compiler does not have to 
be as complicated.  

 

 
1. Instruction set and chip 

hardware become more complex 
with each generation of 
computers.  

2. Individual instructions could be 
of almost length. Different 
instructions will take different 
amounts of clock time to 
execute, slowing down the 
systems overall performance.  

3. Many specialized instructions 
aren’t used frequently.  

 

 
 
 
 
 
 
 RISC  
 
 

 
1. High speed. RISC processors 

achieve 2 to 4 times 
performance of CISC 
processors using comparable 
technology and the same clock 
rates.  

2. Simpler hardware. Less chip 
space is used, so extra functions 
(MMU, FPU, etc) can be placed 
on the same chip.  

3. Shorter design cycle.  
 

 
1. Code quality. The processor’s 

performance depends greatly  
      on the code that is executed.  
2. Code expansion increases the 

needed main memory amount.  
3. The specialized compilers are 

needed.  
 

 

In recent years, the RISC versus CISC controversy has died down to great extent.  
 
 
 

RISC Problem  
 
Today superscalar micros can issue 4 – 5 instructions per cycle, but execute only 1,5 – 2 
instructions per cycle.  
 

Cause  
 

1.  The code and data are not on-chip when needed.  
2.  A cache miss in a high-speed superscalar RISC is a real performance downer.  
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Some potential solutions  

 
1.  Data prefetching,  
2.  Branch prediction,  
3.  Speculative execution,  
4.  Large, multilevel cache-system,  
5.  Smart memory controllers,  
6.  Multiple thread execution,  
7.  Code optimization, code preprocessing,  

 
 
Another approach to RISCs was the zero-address instruction set (the majority of space in an 
instruction was to identify the operands of the instruction).  
In zero-address machines the operands are placed into a push-down (LIFO-type) stack.  
 
 
 
 Summary  
 
One important development in architecture has been the focus on architecture’s role in efficiently 
utilizing the underlying physical technology. The RISC breakthrough is a key example of this idea.  
RISC architects recognized that by scaling the complexity and cost of microprocessor architecture 
down to that point of which an effective pipeline could be implemented a single IC, a large 
increase in performance was possible.  
They recognized that a good match between architecture and the implementation technology is 
crucial to achieving maximum performance and cost efficiency.  
Today’s RISC computers are typically complicated and feature-laden relative to the original RISC 
implementations, but they still reflect careful trade-offs by designers between architectural 
complexity, implementation cost and clock speed.  
 
 
 
 

Literature  
1. Arvo Toomsalu. RISC-mikroprotsessorite arhitektuur. Tallinn, 1995.  
2. IEEE Standard 1754-1999. IEEE Standard for a 32-bit Microprocessor Architecture.  

[The standard is derived from SPARC, which was formulated at Sun Microsystems in 1985. 
IEEE 1754 is designed to be a target for optimizing compilers and easily pipelined hardware 
implementations.]  
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MODERN SUPERSCALAR ARCHITECTURE  
 
 

CISC philosophy  
 

� If added hardware can result in an overall increase in speed, it’s good.  
� The ultimate goal of mapping every HLL statement on to a single CPU construction.  
 

RISC philosophy  
 

� Whether hardware is necessary, or whether it can be replaced by software.  
� Higher instruction bandwidth is usually offset by a simpler chip that can run at a higher clock 

speed, and more available optimizations for the compiler.  
 

Modern or Post-RISC architecture characteristics  
 

� The most significant Post-RISC changes are met in the architecture of a CPU.  
� Superscalar post-RISC processors relied on the compiler to order instructions for maximum 

performance and hardware checked the legality of multiple simultaneous instruction issue.  
� The post-RISC processors are much more aggressive at issuing instructions using hardware to 

dynamically perform the instruction reordering.  
� These processors find more parallelism by executing out of program order.  
 
 
 

Modern Superscalar Processors’ Main Features  
 
 

1. Speculative Execution  
 
In a pipelined processor, branch instructions in the execute stage affect the instruction fetch stage. 
Advanced speculative techniques are used, as for branch predictions, data prediction, address 
prediction, memory dependencies and latencies prediction. To preserve program semantics, a 
speculative movement of instructions should only result in speculative execution that is safe and 
legal.  
Conventional superscalar processor employ the strong-dependence model //jäik sõltuvuste mudel// for 
program execution. In the strong dependence model two instructions are identified as either dependent or 
independent, dependences are pessimistically assumed to exist.  
To superspeculative processors the weak-dependence model //lõtv sõltuvuste mudel// is applied. In this case 
dependences can be temporarily violated during instruction execution as long as recovery can be performed 
prior to affecting the permanent machine state.  
 

Data Value Speculation  
 
The term data value speculation refers to mechanisms that predict the operands of an instruction, 
either source or destination, and execute speculatively the instructions dependent on it before the 
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actual value is computed, allowing the processor to avoid the ordering imposed by data 
dependences.  
 
 

Example  
 
A stride-based data predictor //indeksisammupõhine andmeennusti// is implemented by means of a 
table that is direct-mapped, non-tagged and it is indexed with the least significant bits of the 
instruction address whose source or destination operands are to be predicted.  
Each table entry stores the following information:  
 

1. Last data value  
2. Stride  
3. Confidence  

 
 
Predictor for arithmetic instructions stores the last result in the last value field.  
Load address predictors store the last effective address.  
Load value predictors store the last value read from memory.  
Store predictor uses two tables: one for predicting the effective address and the other for predicting 
the value to be written.  
 
When an instruction is to be predicted, the prediction table is accessed and the predicted value is 
computed adding the stride to the previous last value. If the most significant bit of the confidence 
field is set and the prediction is correct, the predicted value can be used instead of the actual value 
if the former is available earlier.  
 

S peculative Execution 

Control Speculation Data Speculation Address Speculation 

Branch Direction Branch Target Data Location Data Value 
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2.  Instructions Predecoding  
 
Instruction decoding involves the identification of the instruction types and detection of 
instructions dependences among the group of instructions that have been fetched but not yet 
dispatched.  
The complexity of the instruction decoding task is influenced by the ISA and the width of the 
parallel pipeline.  
 

o For a RISC scalar pipeline, instruction decoding is trivial. Usually decode stage is used 
for accessing the register operands and is merged with the register read stage.  

o For a RISC parallel pipeline with multiple instructions being simultaneously decoded, 
the decode stage must identify dependences between instructions and determine 
independent instructions that can be dispatched parallel.  

o For a CISC parallel pipeline the instruction decoding stage is more complex and usually 
requires multiple pipeline stages.  

o The modern CISC pipelines have an additional task – the decoder must translate the 
architected instructions into internal low-level operations that can be directly executed 
by the HW.  

 

These internal operations resemble RISC instructions and can be viewed as vertical 
microinstructions.  
 
 

3.  Threading  
 
In virtual memory systems is distinguished between multitasking of processes and threads.  
Thread //lõim, haru// - a sequential execution stream within a task (process).  
A thread state is entirely stored in the CPU, while a process includes extra state information – 
mainly operating system support to protect processes from unexpected and unwanted interferences.  
Threads are sometimes called lightweight processes. Switching between threads does not involve 
as much overhead as conventional processes.  

OPOT OPMT

MPOT MPMT

One 
Thread 

Multiple 
Threads 

One 
Process 

Multiple 
Processes 

Instruction Trace 
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4. Multithreading  
 
Contemporary superscalar microprocessors are able to issue 4-6 instructions at each clock cycle 
from a conventional linear instruction stream. New technology will allow microprocessors with an 
issue bandwidth of 8-32 instructions per cycle.  
As the issue rate of microprocessors increases, the compiler or the hardware will have to extract 
more instruction-level parallelism from a sequential program.  
 

ILP found in conventional instruction stream is limited.  
 

Most techniques for increasing performance increase power consumption.  
The multithreaded approach may be easier to design and have higer power efficiency, but its utility 
is limited to specific – highly parallel-applications.  
 

Multithreading does not improve the performance of an individual thread, because it does not 
increase the ILP. It improves the overall throughput of the processor.  

 

Multithreading exploits a different set of solutions by utilizing coarse-grained parallelism.  
A multithread processor is able to concurrently execute instructions of different threads of control 
within a single pipeline. Multithreading replicates only the program counter (PC) and register file, 
but not the number of execution units and memories.  
Multithreading effectively divides the resources of a single processor into two or more logical 
processors, with each logical processor executing instructions from a single thread. It means that 
the processor must provide:  
a)  Two or more independent program counters,  
b)  An internal tagging mechanism to distinguish instructions of different threads within the pipeline  
c)  A mechanism that triggers a thread switch.  
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In explicit multithreaded processor //ilmutatud lõim- e hargtöötlusega protsessor// is used a 
coarce-grained parallelism. Multiple program counters are available in the fetch unit and the 
multiple contexts are often stored in different register sets. The execution units are multiplexed 
between the thread contexts.  
 
 Explicit multithreading techniques are:  
 

1. Interleaved multithreading (IMT)  
  An instruction of another thread is fetched and fed into the execution pipeline at each  

processor cycle ( ⇒ barrel processor).  
2. Simultaneous multithreading (SMT)  
  Instructions are simultaneously issued from multiple threads to the execution units of a  

 superscalar processor.  
3. Blocked multithreading (BMT)  
  The instructions of a thread are executed successively until an event occurs that may cause  

  latency. This event induces a context switch.  
 
In implicit multithreaded processors //ilmutamata lõimtöötlusega protsessor// is the thread-level 
speculation applied. These processors can dynamically generate threads from single-threaded 
programs and execute such speculative threads concurrent with the lead thread.  
In case of misspeculation all speculatively generated results must be squashed.  
 

Threads generated by implicit multithreaded processors are always executed speculatively,  
in contrast to the threads in explicit multithreaded processors.  

 
Simultaneous multithreading allows multiple threads to execute different instructions in the same 
clock cycle. In the SMT processor the multithreading technique is combined with a wide-issue 
superscalar processor. The number of concurrent threads has practical restrictions and usually 
limits the number from 2 to 8 concurrent threads.  
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5.  Predicated Instructions  
 
The instructions which are executed only if conditions are true, bits in a condition code register 
have an appropriate value. This eliminates some branches, and in a superscalar processor can allow 
both branches in certain conditions to be executed in parallel, and the incorrect one discarded with 
no branch penalty.  
 
 

6.  Branch Prediction  
 
All pipelined processors do branch prediction of some form. There are many different branch 
prediction methods in use - trivial prediction, next line prediction, bimodal branch prediction, local 
branch prediction, global branch prediction, combined branch prediction, agree prediction, 
overriding branch prediction.  
 
  Branch path  –   consist of the dynamic code between two conditional branches with  
//hargnemistee//    no intervening unconditional branches.  
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Split branch  
//tükeldatud hargnemine//  

 
 
 
                           Forked branch                                                       Spawned branch   
 

     [The branch execution proceeds down                             [When the two paths begin execution  
       both paths of the at the same time.]                                 of different times, then the later path  
                                                                                                          spawned from the branch.]  
 

The earliest and simplest form of multipath execution was Y-pipe.  
 
 Multipath execution  
Multipath execution is the execution of code down both paths of one or more branches, discarding 
incorrect results when a branch is resolved.  
In typical speculative execution a branch’s final state, taken or not taken, is predicted when the 
branch is encountered.  
Multipath execution differs from unipath execution in that both paths of a branch may be 
speculatively executed simultaneously. Thus, any branch misprediction penalty normally occurring 
in unipath execution is reduced or eliminated, improving performance.  
 

Speculative code can consist of both multipath and unipath sections, that is, section may proceed 
down one or both paths of a branch, and this situation may change over time.  
Most forms of multipath execution use some form of branch prediction.  
 
 

7.  Prefetching  
 
A technique which attempts to minimize the time a processor spends waiting for instructions to be 
fetched from memory. Instructions following the one currently being executed are loaded into a 
prefetch queue when the processor's external bus is otherwise idle. If the processor executes a 
branch instruction or receives an interrupt then the queue must be flushed and reloaded from the 
new address.  
 
 

8.  Trace Cache  
 
The trace cache is a mechanism for increasing the instruction fetches bandwidth by storing traces 
of instructions that have already been fetched, and maybe even executed.  
 
The trace cache line is filled as instructions are fetched from the instruction cache.  
Each line in the trace cache stores a trace (a snapshot) of the dynamic instruction stream.  
The same dynamic sequences of basic blocks that appear non-contiguous in the instruction cache 
are contiguous in the trace cache. Trace caches are caches that store instructions either after they 
have been decoded, or as they are retired.  
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A trace is a sequence of at most n instructions and at most m basic blocks starting at any point in 
the dynamic instruction stream.  

 
Trace lines stored in the trace cache are fully specified by a starting address and a sequence of 
branch outcomes which describe the path followed.  
 
 

BB1 BB2

BB3 BB5

BB4

BB6

T2 = BB2, BB4, BB6, BB2 

T3 = BB6, BB2, BB4, BB6T4 = BB1, BB2, BB4, BB6 

T1= BB1, BB2, BB3, BB5  

TRACE CACHE 
Content 

             BBi - basic block i 
Tj - trace j 

 
Program flow and corresponding trace cache contents  

 
In the instruction fetch stage of a pipeline, the current program counter along with a set of branch 
predictions is checked in the trace cache for a hit. If there is a hit, a trace line is supplied to fetch.  
The trace cache continues to feed the fetch unit until the trace line ends or until there is a 
misprediction in the pipeline. Because traces also contain different branch paths, a good multiple 
branch predictor is essential to the success rate of trace caches.  
 

The limit n is the trace cache line size and m is the branch predictor throughput.  
 

 
 
 

Trace Cache Main Features  
 

• A trace cache consists of control and data area. The control of each trace cache entry holds 
a trace tag composed out of its starting address, number of basic blocks and branch 
outcome of each block.  

 

An average basic block size is 4-5 instructions.  
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• The start PC and branch outcomes are collectively called the trace identifier or trace ID. 
Looking up a trace in the trace cache is similar to looking up instructions or data in 
conventional caches, except the trace ID is used instead of an address.  

 

• A subset of the trace ID forms an index into the trace cache and the remaining bits form a tag.  
 

PC content; Branch outcomes in trace BBs Trace ID 

Index

Tag 

Trace Cache 

 

• One or more traces and their identifying tags are accessed at that index. If one of the tags 
matches the tag of the supplied trace ID, there is a trace cache hit. Otherwise, there is a 
trace cache miss.  

 

• New traces are constructed and written into the trace cache either speculatively or non-
speculatively.  

 

• A new predicated trace ID is supplied to the trace cache each cycle.  
 

• In addition to typical parameters such as size, set-associativity and replacement policy, the 
trace cache design includes:  

 

1. Indexing methods;  
2. Path associativity;  
3. Partial matching;  
4. Trace selection;  
5. Trace cache fill policy;  
6. Parallel or sequential accessing of the trace, etc.  

 

•••• A problem of trace caches is that they necessarily use storage less effectively than 
instruction caches.  

 

• Longer traces improve trace prediction accuracy.  
 

• Overall performance is not as sensitive to trace cache size and associativity.  
 

 

 
 
 

Trace Cache Model  
 
 
The trace cache fetch mechanism consists of the trace cache (TC), the fill unit, a trace predictor,  
and a conventional instruction cache with a branch predictor.  

The front-end architecture is critical to the performance of a processor as a whole, as the 

processor can only execute instructions as fast as the front –end can supply them.  
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The trace predictor treats threads as basic units and explicitly predicts sequences of traces.  
The output of the trace predictor is an identifier (ID) indicating a starting instruction address of  
a trace. The identifier is used to index the trace cache and the trace is provided if the access is hit.  
The index into the trace cache can be derived from the starting PC (program counter state), or a 
combination of PC and branch outcomes.  
When a trace cache miss occurs, the instruction cache works as a backup and supplies instructions 
with the help of the branch predictor.  
 
The fill unit collects the traces which are stored in the trace cache. It constructs the trace using the 
instructions supplied from the instruction cache, and updates the trace cache according to branch 
outcomes provided by the execution engine.  
Each trace is dispatched to both the execution engine and an outstanding trace buffer (OSTB).  
A trace line begins with a target and ends with a control transfer instruction.  
 

Start PC 
Branch 

f lags 
Branch 

mask 
Terminal 

branch info. 
Fall-through 

Address
Target 
Address

Trace ID Instructions in trace  

Content of Trace Line 

{ends in conditional branch; does not end in control transfer, etc}  

 
Each bit in the branch flag encodes whether or not the corresponding embedded branch is taken.  
The branch mask is a sequence of leading 1`s followed by railing 0`s. Only internal branches and 
not a terminal branch distinguish the trace and considered by the hit logic.  
If the maximum branch limit is m branches overall, then the maximum number of embedded 
branches in trace is no more than (m-1). There are (m-1) branch flags, and the branch mask is  
(m-1) bits long.  
 

The bth branch is predicted by branch predictor terminates a trace.  
 

The branch mask is used by the hit logic to compare the correct number of branch predictions with 
branch flags, according to the actual number of branches within the trace.  
 

The branch mask determines how many of the predictions supplied by the multiple-branch 
predictor are actually “considered” by the matching procedure.  
 

If the terminal instruction is a conditional branch, then the two address fields are equal to the 
branch’s fall-through and target address respectively.  
If the terminal branch is predicted taken, then the next PC is set equal to the trace`s target address.  
If the terminal branch is predicted not-taken, then the next PC is set equal to the trace`s fall-
through address.  
The trace construction finishes when:  
 

1. The trace contains n instructions;  
2. The trace contains m conditional branches;  
3. The trace contains a single indirect jump, return or trap instruction;  
4. Merging the incoming block would result in a segment larger than n instructions.  

 

A basic block cannot be split across two traces.  
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The performance of the TC is strongly dependent of trace selection, the algorithm used to divide 
the dynamic instruction stream into traces.  
 
 Trace Cache Types  
 

1.  CTC – conventional TC;  
2.  STC – sequential TC;  
3.  BBTC – block-based TC.  

 
 
 Full and Partial TC Hit  
 
Sometimes partial trace cache hit occurs. When such event occurs, either the inter-trace prediction 
is incorrect or at least one of the intra-trace predictions is incorrect.  
 

At least one of the branches in the trace results in a miss or the entire trace is invalid.  
 

The CTC has the same instruction fetch organization as the STC, except that the backing 
instruction cache and the trace cache are probed in parallel.  
 

Trace Cache Metrics - Hit rate, Fragmentation, Duplication and Efficency.  
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Example  
 

Model of the Modern 6-way Superscalar Processor  
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Fetch / Flow Prediction  
 

1. The branch prediction is a part of the decode operation.  
This information is available to the instruction fetch unit 1-3 cycles too late.  
The Instruction Fetch Unit must know the next address to fetch before a decode phase starts.  

To allow the Instruction Fetch Unit to fetch the next instruction, without waiting for decode 
phase and branch lookup, flow history table bits are added to each group of six instructions.  

 
Decode / Branch  

 

1.  The instruction is decoded and more accurate branch prediction is performed.  
2.  At each branch instruction, the flow of the program diverges into two separate  
      instruction streams. The CPU makes a prediction based upon certain heuristics and the past  
      behavior of that instruction.  
 
 Instruction Dispatch and Reorder Buffer  
 

1. The instructions are queued waiting to be dispatched.  
2. Instructions are ready to be dispatched when:  
 

• Their input values are available,  

• Their output register is available,  

• An execution unit is available.  
 

3. Dispatched, but not ready, instructions are buffered into appropriate Reservation Stations.  
4. Rename Registers hold results until the instruction retires.  
5. At retirement, the Rename Registers are either copied to the architectural register.  
6. When a branch is resolved, all of the Rename Registers allocated for wrong path are freed,  

and only instructions on the correct path are allowed to retire.  
 

Execution Units  
1. Functional Units classification:  
 

a. Single-cycle.  
b. Multiple-cycle:  

1  Multi-cycle units that are pipelined  
2  Multi-cycle units that are pipelined but do not accept a new operation each cycle  
3.  Multi-cycle units that are not pipelined  

c. Variable cycle time units  
 

2. The Branch Unit communicates the results of a branch evaluation to the other units:  
 

• The Fetch/ Flow Unit must be informed of mispredictions so that it can update the 
flow history in the instruction cache and begin fetching at the correct target 
address;  

• The Branch/Decode Unit must be informed so that it updates the branch history 
table.  

• The Instruction Dispatch and Reorder Buffer must be informed so that it can discard 
any instruction that should not be executed.  
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• The Completed Instruction Buffer must be informed to discard instructions, which 
will never be retired.  

• If there are multi-cycle Execution Units working on instructions that will never be 
executed because of a branch, they also must be notified.  

 

3.  Completed Instruction Buffer and Retire Unit  
 

1. The Completed Instruction Unit holds instructions that have been speculatively executed.  
2. The Retire Unit removes executed instructions in program order from the Completed 

Instruction Buffer.  
3. The Retire Unit updates the architectural registers with the computed results from the Rename 

Registers.  
4. By retiring instructions in order, this stage can maintain precise exception.  
5. In post-RISC architecture the important performance metric is the number of instructions 

retired in parallel.  
 
� Next step is Advanced Super Scalar Processors, which shall achieve instruction issue from  

16 up to 32 instructions per cycle.  
� Barrel processor is a CPU that switches between threads of execution on every cycle.  
 
 
 Summary  

Multiple-Issue Architectures  
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 Summary  
 
 
 

1. The performance of superscalar processors is dependent on scheduling instructions so that 
the utilization of the functional units in the processor is maximized.  

 
2. The number of instructions that can be concurrently scheduled is determined by data and 

control dependencies. When scheduling in software it is only possible to use static 
information.  

 
3. Superscalar microprocessors require a window of instructions, which can potentially be 

scheduled in a clock cycle.  
 

4. For solving these tasks hardware support is needed.  
 
5. Increasing the size of the instructions window increases the probability that functional units 

can be fully utilized.  
 
6. Without out-of-order execution the instruction window is limited to instructions between 

the currently executing instructions and the first instruction with a data dependence on the 
result of an incomplete instruction.  

 
7. Data dependencies can occur via registers or via the memory subsystem.  
 
8. Out-of-order execution by itself limits the instruction window to a single basic block, 

which averages only about five instructions.  
 
9. To maintain an instruction window large enough to keep a number of functional units busy, 

instructions from multiple basic blocks must be included.  
 
10. One way to do this is to speculate on the outcome of branches by executing both paths 

through a branch and then discarding the untaken branch.  
 
11. Instructions other than branch instructions can be executed speculatively.  
 
12. Speculative execution necessitates some method of recovery from data dependence 

conflicts, usually by returning to an earlier state and re-executing.  
 
13. While speculation increases the instruction window size it places additional requirements 

on the CPU.  
 
14. Speculation is considered in the context of speculation on branch instructions.  
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15. Other possibilities to handle branches are:  
 

a.   Loop buffers;  
b.   Multiple instruction streams;  
c.   Prefetch branch target;  
d.   Data fetch target;  
e.   Delayed branch;  
f.   Look ahead resolution;  
g.   Branch folding target buffers.  

 
16. A different style of speculation is possible by noticing that some blocks within a program 

are guaranteed to execute no matter what combination of branches precede them.  
 
 
 
 
 
 Literature  
 
Kaeli David R., Yew Pen-Chung. Speculative Execution in High Performance Computer 
Architectures. Chapman & Hall/CRC Computer and Information Science Series. Taylor & Francis 
Group. LLC. CRC Press, 2005.  
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VLIW ARCHITECTURE  
VLIW – Very Long Instruction Word  

 
 
There are four major classes of ILP architectures, which can be differentiated by whether these 
tasks are performed by the hardware or by the compiler:  
 

1. Superscalar processor architecture,  
2. EPIC architecture,  
3. VLIW architecture,  
4. Dynamic VLIW architecture.  

 

VLIW is an architectural approach that relies on compiler technology, it exploits well-scheduled 
code. In this architecture are generalized two concepts:  
 

Horizontal microcoding and Superscalar processing  
 

ADR  
next MI

Horizontal microcoding MO1 MO2 MO3 MOn

Vertical microcoding
ADR  

next MI
Microoperation 

(MO) Code 

Microinstruction (MI) format 

Narrow MO word width 

W ide MO word width 

 
 
� In VLIW technology several instructions are issued during each clock cycle as in superscalar 

case.  
� Programs written in conventional short instruction words must be compacted together to form 

the VLIW instructions.  
� The compiler reveals parallelism in the program and notifies the hardware on which operations 

do not depend on each other.  
� Different fields of the long instruction word carry the opcodes to be dispatched to differential 

functional units.  
 
 Increasing ILP by Compiler  
 

1. Loop unrolling  
2. Software pipelining  
3. Trace scheduling  

Trace scheduling consists of two phases:  
1. Trace selection (identifying frequent codes; may use loop unrolling to generate long trace);  
2. Trace compaction (squeeze trace into a small of wide instructions; move instructions as 

early as possible; add compensation code).  
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VLIW versus Superscalar (I)  
 
In VLIW processor the compiler guarantees that there are no dependencies between instructions 
that issue at the same time and that there are sufficient HW resources to execute them.  
In superscalar processor the HW buffers and dynamically schedules instructions during operation. 
Pipelining utilizes temporal parallelism, whereas VLIW and superscalar techniques utilize also 
spatial parallelism.  
 
 
 

VLIW Processor’s Model  
 

 
 
 
 

Multiported Register File

Instruction 
Cache 

Main Memory 

Load / 
Store 
Unit

Branch 
Unit 

F-unit 
(s-1)

F-unit 
(1)

Issue 
Slot 1

Issue 
Slot 2

Issue 
Slot (s-1)

Issue 
Slot n.....

Instruction 
bundle 



 251

VLIW Compiler 

 
Techniques to find more ILP out of the sequential instruction stream during preparing information 
for VLIW processor are:  
 

1. Loop Unrolling  
Loop unrolling is one basic technique to find more ILP out of the sequential instruction stream.  

2. Software Pipelining  
Software pipelining is a technique which enables the later iterations of a loop to start before the 
previous iterations have finished the loop.  

3. Trace Scheduling  
The trace scheduling technique has been developed to find more ILP across the basic block 
boundary. Trace is considered a large extended basic block which has the control path which is 
frequently taken. This technique considers the branch instructions as jump instructions inside a 
trace, and it schedules the instructions inside the trace as a large basic block.  
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All the three techniques can be used to increase the amount of parallelism by extending the 
instruction pool. They are all strongly depending on an appropriate and accurate control flow 
prediction.  
 
 
 

VLIW Architecture Features  
 

1. Compiler packs independent instructions into VLIW.  
2. The multiple operations are tied into one very long instruction,  

into instruction bundle //käsukimp//.  
3. Compiler schedules all HW resources.  
 The compiler and the architecture for VLIW processor must be co-designed.  
4. Instruction latencies are fixed.  
 Instruction latency is the inherent execution time for an instruction.  
5. Entire long instruction word is issued as a unit.  
6. Multiple independent functional units.  
7. To keep functional units busy, there must be enough parallelism in a straight-line code.  

 

 
The template field T //malliväli// indicates which of the instructions in the bundle or  
in the neighbouring bundles can be used in parallel on different functional units.  
 
 The possible instruction handling in one instruction bundle:  
 

1.   I1 ║ I2 ║ I3 - instructions I1, I2 and I3 are all executed concurrently;  
2.   I1 & I2 ║ I3 – first the instruction I1 is executed, and then the I2 and I3  
                              instructions are executed concurrently.  
3.   I1 ║ I2 & I3 – first the I1 and I2 instructions are executed concurrently,  
                               then the I3 instruction;  
4.   I1 & I2 & I3 – instructions I1, I2 and I3 are all executed sequentially.  

 
 

Predicated Instructions  
 
Predication - is a form of compiler-controlled speculation in which branches are removed  
                         in favour of fetching multiple paths of control.  
 
Predication is the conditional execution of instructions based on the value of a Boolean source 
operand, referred to as the predicate. A qualifying predicate is in a 1-bit predicate register(s).  



 253

The values in the predicate register file are associated with each instruction in the extended 
instruction set through the use of an additional source operand. These operand specifiers which 
predicate register will determine whether the operation should modify processor state.  
The values of the predicates registers are set by the results of instructions such as compare and test 
bit.  
1. If the value in the predicate source register is true (“1”), a predicated instruction is  
      allowed to execute normally.  
2. Otherwise (“0”), the predicated instruction is nullified, preventing it from modifying  
      the processor state.  
 
 
 Example  
 
   Original instruction flow:  
 
if (x > y)                       // branch Bi //  
a = b+c  
else  
d = e+f  
 
g = h/j-k;                     // instruction independent of branch Bi //  
 
   Predicated instruction flow:  
 
pT, pF = compare (x > y) // branch Bi: pT is set to TRUE if x > y, else pF is set to TRUE //  
if (pT)  a = b+c  
if (pF) d = e+f  
g = h/j-k;  
 
The branch is eliminated and the compiler can schedule the instructions under pT and pF to 
execute in parallel.  
 
 
 Predication Features  
 
It is able to eliminate a branch and therefore the associated branch prediction.  
The run length of a code block is increased (better compiler scheduling);  
Predication affects the instruction set, adds a port to the register file, and complicates  
instruction execution;  
Predicated instructions that are discarded will consume processor resources,  
especially the fetch bandwidth;  
Predication is most effective when control dependencies can be completely eliminated;  
The use of predicated instructions is limited when the control flow involves more  than a simple 
alternative sequence.  
Multi-way branch  
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VLIW Pipeline  

4-stage VLIW pipeline with four functional units  
 
� VLIW architecture uses instruction bundles. As for IA-64 defines a 128-bit bundle that 

contains three instructions, called syllables //silp//, and a template field.  
 

� The processor can fetch instructions one or more bundles at a time.  
The interpretation of the template field is not confined to a single bundle.  
The template field bits, placed there by compiler, tell to the CPU which instructions can be 
executed in parallel. Template bits in each bundle specify dependencies both within bundles as 
well as between sequential bundles.  

 

� When CPU finds a predicated branch, it begins to execute the code for every possible branch 
outcome. When the outcome of the branch is known, the processor discards the results along 
“wrong path” and commits results along the “right path”. In effect there is no branch at the 
processor level.  

 

� If the compiler cannot predict a branch then the CPU will behave like a conventional 
processor, it will try to predict which way the branch will turn.  

 

� A compiler scans the source code to find upcoming loads from main memory. It will add a 
speculative load instruction and a speculative check instruction.  
At run time, the first instruction loads the data from memory before the program needs it.  
The second instruction verifies the load before letting the program use the data.  
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VLIW versus Superscalar (II)  
 

1. The code density of the superscalar processor is better than in the VLIW processor.  
2. The decoding of the VLIW instructions is easier than the superscalar instructions.  
3. The VLIW-processors are exploiting different amounts of parallelism; they require the 

different instruction sets.  
4. VLIW architecture supports only in-order issue of instructions.  
5. VLIW is an architectural technique, whereas superscalar is a microarchitectural technique.  
 
 

Dynamic VLIW Architecture  
 
1. In a dynamic VLIW processor the grouping of instructions and functional units  
      assignment are done by the compiler, but the initiation timing of the operations  
      is done by hardware scheduling.  
2. Dynamic VLIW has some advantage over traditional VLIW since it can respond to  
      events at run time that cannot be handled by the compiler at compile times.  
3. The dynamic VLIW processor handles run-time events by adding dynamic  
      scheduling hardware for the individual operations.  
      Instruction execution is split into two (or three) phases, with the first phase  
      statically scheduled to read the registers, compute a result, and write the result to  
      a temporary results buffer.  
      The second phase will move results from the buffer into the register.  
 
 

VLIW Architecture Limitations  
 
1. Need for a powerful compiler.  
2. Limited amount of parallelism available in instruction sequences.  
3. Code size explosion.  
4. Binary incompatibility across implementations with a varying number of FUs.  
5. VLIW processors maximize throughput, not latency, they may not be attractive to the 

engineers designing embedded microcontrollers and computers.  
 
 

EPIC Technology Principles  
 

EPIC – Explicitly Parallel Instruction Computing  
 
An instruction group is a sequence of consecutive instructions with no register data dependences 
among them. All instructions in a group could be executed in parallel, if sufficient HW resources 
existed.  
The boundary is indicated by placing a stop between two instructions that belong to different 
groups. Unlike earlier parallel VLIW, EPIC does not use a fixed word length encoding.  
1. In an EPIC architecture the compiler determines the grouping of independent instructions and 

communicates this via explicit information in the instruction set.  
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2. A template in the instruction bundle identifies the instruction type and any architectural stops 
between groups of instructions.  
The length of a bundle does not define the limits of parallelism.  

3. To avoid conditional branches, each instruction can be conditioned (predicated) on a true/false 
value in a predicate register.  

4. IF-THEN-ELSE sequences can be compiled without branches.  
5. Multiple targets can be specified and instructions can be prefetched from those paths.  
6. The change of the program counter can be delayed until an explicit branch instruction.  
7.   EPIC incorporates:  

1.   Speculation (data and control);  
2.   Prediction;  
3.   Explicit parallelism;  
4.   Scalability with respect to the number of FUs.  

8.   EPIC`s basic features are:  
1. Separate large register files (64-bit general purpose registers (GR0-GR127), 82-bit floating 

point registers (FR0-FR127), 1-bit predicate registers (PR0-PR63), 64-bit branch registers 
(BR0-BR7) – used to specify the target addresses of indirect branches) for execution units.  

2. Parallel instruction execution in separate execution units.  
3. Multi-way branches – by bundling 1-3 branches in a bundle, the execution may jump to 

any one of the three branches or may fall through to the next instruction. The first true 
branch will be taken.  

4. 128-bit instruction formats. Instructions are bundled in the groups of three instructions.  
5. Instruction set is optimised to address the needs of cryptography, video encoding and other 

functions needed by the servers and workstations.  
 
 
 

IA-64 Architecture (Itanium) Processor 10-Stage In-Order Pipeline  
 

Instruction 
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generation 
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Front-end (IPG, Fetch, Rotate)  
1. Prefetches up to 32 bytes per clock (2 bundles) into a prefetch buffer, which can hold up to 8 
bundles;  
2. Branch prediction is done using a multilevel adaptive predictor.  
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Instruction delivery (EXP, REN)  
1. Distributes up to 6 instructions to the 9 functional units;  
2. Implements register renaming for both rotation and register stacking.  
 

Operand delivery (WLD, REG)  
1. Accesses register file, performs register bypassing, accesses and updates a register scoreboard,  
    and checks predicate dependences.  
 

Execution (EXE, DET, WRB)  
1. Executes instructions through four ALUs and two load/store units, detects exceptions, posts NaTs,  
    retires instructions and performs write-back 
2. Deferred exception handling for speculative instructions is supported by providing the  
    NaTs (Not a Thing), for the GPRs, and NaT Val (Not a Thing Value) for FPRs.  
 
 
 

The IA-64 Instruction Bundle  
 
The bundled instructions don’t have to be in their original program order; they can represent 
entirely different paths of a branch.  

Compiler can mix dependent and independent instructions in a bundle.  
Unlike some other VLIW architecture, the IA-64 does not insert NOP instructions to fill slots in 
the bundles.  

128-bit bundle 

Instruction slot 1 Instruction slot 2 Instruction slot 3 Template

41 41 41 5

41-bit instruction 

Major 

opcode 

4 6 7 7 7 10 

Other modifying bits GR3 GR2 GR1 PR

GR - General or Floating-point Register  

PR - Predicate Register 

Typical instruction format 

Instruction bundle 

 
All RISC-like instructions have a fixed-length 41-bit format.  
The template is formed to specify inter-instruction information, which is available in the compiler.  
 

 The template value accomplishes two purposes:  
1. The field specifies the mapping of instruction slots to execution unit types.  
2. The field indicates the presence of any stops.  
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Stops may appear within and/or at the end of the bundle. The absence of stops indicates that some 
bundles could be executed in parallel.  
 
 
 

Handling Branches in IA-64  
 
1. Normally a compiler turns a source-code branch statement (IF-THEN-ELSE) into alternate 

blocks of machine code arranged in a sequential stream.  
2. Depending on the outcome of the branch the CPU will execute one of those basic blocks by 

jumping over the others.  
3. After tagging the instructions with predicates, the compiler determines which instructions the 

CPU can execute parallel, even pairing instructions from different branch outcomes as they 
represent independent paths trough the program.  

4. When the CPU finds a predicated branch, it doesn’t try to predict which way the branch will 
work and doesn’t jump over blocks of code to speculatively execute a predicted path.  

5. At some point, the CPU will eventually evaluate the compare operation that corresponds to the  
IF-THEN-ELSE statement.  

 
 
 

The IA-64 Register Model  
 
The main components of the IA-64 register file are:  
 

1. 128 general-purpose 64-bit registers, which are actually 65-bits wide;  
2. 128 floating-point 82-bit registers, which provide two extra exponent bits over the 

standard 80-bit IEEE format;  
3. 64 predicate 1-bit registers;  
4. 8 branch 64-bit registers, which are used for indirect branches;  
5. A variety of registers used for system control, memory mapping, performance counters 

and communication with the OS.  
 

4. Each basic template has two versions – one with a stop after the third slot and  
one without.  

5. Instructions must be placed in slots corresponding to their types based on the template 
specification, except for A-type instructions that can go in either I or M slots.  
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The Execution Unit Slots and Instruction Types they may hold  
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Integer ALU  
 

 

add, sub, and, or, compare, subtract   
I-unit 

 
 

I  
 

Non-ALU integer  
 

 

integer and multimedia shifts, bit tests  

 

A  
 

 

Integer ALU 
 

add, subtract, and, or   
M-unit 

 

M  
 

Memory access  
 

 

loads and stores for Integer/FP registers  

 

F-unit 
 

 

F  
 

Floating point  
 

 

floating-point instructions  

 

B-unit 
 

 

B  
 

Branches  
 

conditional branches, calls, loop 
branches  

 

L+X 
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Extended  
 

 

extended immediate, stops and no-ops  
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Itanium  
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Itanium Register Model  
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 Comment  
 

Superscalar Architecture versus IA-64 Architecture  
 

 

Superscalar  
 

 

IA-64  
 

 

RISC-like instructions.  
 

 

RISC-like instructions bundled into groups of 
threes.  

 
 

Instruction stream reordering and optimization at 
run time.  

 

 

Instruction stream is reordered and optimized at 
compile time.  

 

 

Branch prediction, speculative execution of one 
path.  

 

 

Speculative execution along both paths of a 
branch.  

 
 

Multiple parallel running execution units.  
 

 

Multiple parallel running execution units.  
 

 

Data is loaded from memory only when needed. 
Tries to find the data in the caches first.  

 

 

Data is speculatively loaded before it is needed. 
Tries to find the data in the caches first.  

 

 
 

Summary  
 

Major Categories of ILP Architectures  
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 Additional Readings  
 LM:   EPIC (IA-64)-arhitektuurist  
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PROCESSOR ARCHITECTURE DEVELOPMENT 
TRENDS  

 
The main directions in future processor architecture principles  

 

A.  Increase of a single-thread performance – use of more speculative ILP;  
 

 Speed-up single–threaded applications:  
 

1.  Trace cache – tries to fetch from dynamic instruction sequences instead of the static 
instruction cache;  

2.  Superspeculative processor – enhance wide-issue superscalar performance by  
speculating aggressively at every point.  

3.  Advanced superscalar processor – scale current superscalar processor designs up to 
issue 16 or 32 instructions per cycle.  

 

B. Increase of multi-thread (multi-task) performance – utilize thread-level parallelism  
      (TLP) additionally to ILP.  
 

 Speed-up multi-threaded applications:  
 

1. Chip multiprocessor (CMP) //kiipmultiprotsessor//;  
2. Simultaneous multithreading (SMT).  

 

C.   Speed-up of a single-treaded application by multithreading:  
 

1. Trace processor //jäljeprotsessor//;  
2. DataScalar processor //andmeskalaarne protsessor//;  
3. Multiscalar processor //multiskalaarne protsessor//.  

 

D.   The other possibilities are:  
 

1. RAW (>100 reconfigurable processing elements);  
2. Asynchronous processor.  

 
 

Advanced Superscalar Processor  
 
The main idea is – more and wider instruction issue.  

o To improve instruction supply:  
1.  Out-of-order fetch,  
2.  Multi hybrid branch predictor,  
3.  Trace cache.  

o To improve data supply:  
1.  Replicate first level cache,  
2.  Huge on chip cache,  
3.  Data speculation.  
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Superspeculative Processor  
 
The basis for the superspeculative approach is that producer instructions generate many highly 
predictable values in real programs. Consumer instructions can frequently and successfully 
speculate on their source operand values and begin their execution with without results from the 
producer instructions.  
The theoretical basis for superspeculative microarchitecture rests on the weak dependence model.  
A superspeculative microarchitecture must maximize:  
 

Instruction flow  
It is important the rate at which useful instructions are fetched, decoded, and dispatched to the 
execution core. Instruction flow is improved by using a trace cache.  
 

Data flow  
It is important the rates at which results are produced and register values become available. 
Eliminates and bypasses as many dependencies as possible. There is used the register renaming 
mechanism.  
 

Memory data flow  
It is important the rate at which data values are stored or retrieved from data memory.  
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Simultaneous Multi Thread (SMT) Processor (SMP)  
 

• Traditional multi-threaded processors support thread execution via time-sharing method.  
They schedule threads either at the block granularity or at instruction granularity.  

• It is an augment wide superscalar to execute instructions from multiple threads on control 
concurrently, dynamically selecting and executing instructions from many active threads 
simultaneously.  

• SMT processor (SMP) can safely simultaneously issue several instructions. This means that the 
instructions that have no intrathread dependence (ILP) and the collection of available 
instructions over all the threads can be combined and issued to the functional units.  
This will result in a better utilization of hardware resources since the two forms of parallelism 
are exploited instead of one (ILP), as in a conventional superscalar processor.  

• To run multi-thread, it requires saving processor states.  

• There are duplicated units for PC and registers.  
 
 

One chip Multiple Processor CMP  
 
It consists of multiple simple fast processors. Each processor couples to a small fast L1-level 
cache.  
 
 Main features:  
 

• CMP supports the TLP explotation better than other architectures;  

• Simple design and faster validation processor units,  

• Shorter cycle time,  

• Distributed cache lower demand on memory bandwidth,  

• Code explicitly parallel.  
 

 Disadvantage - It is slower than SMP when running code that cannot be multithreaded,  
      (only one processor can be targeted to the task).  
 
 

RAW Processor  
 
A highly parallel RAW processor is constructed of multiple identical tiles //klots//.  
Each tile contains 16kB instruction memory (IMEM), 32kB data memory (DMEM), an ALU, 
registers, configurable logic (CL) and a programmable switch associated with its 16 kB instruction 
memory.  
 

• It does not use ISA.  

• A program is compiled to hardware.  

• The compiler schedules communication.  

• Compiler has limits.  
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Trace Processor  
 
 
The trace processor consists of multiple superscalar processing cores, each one executing a trace 
issued by a shared instruction issue unit. It also employs trace and data prediction and shared 
caches.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instruction fetch HW fetches instructions from the I-cache and simultaneously generates traces of 
the 8 to 32 instructions, including predicted conditional branches.  
Traces are stored in a trace cache. A trace fetch unit reads traces from the trace cache and sends 
them to the parallel processing elements (PE).  
 
 
 
 

There are three different trends in development of future computer architectures:  
 

1. Multicores - integrating a set of cores, each of them preserves the same "single thread" 
performance as previous generation;  

2. Many-cores - integrating large number of cores, trading single threaded performance with 
MTL (Multi-Threaded Level) performance;  

3. Special cores - an integration of multi-cores with many cores, fixed function logic and/or 
programmable logic such as FPGAs.  
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Appendix  
 

 
 

Floorplan for the 6-issue dynamic superscalar microprocessor  

 
Floorplan for the 4-way chip multiprocessor (CMP) or 4-core microprocessor  
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 Summary  
 

Architecture  Key Idea  

Advanced Superscalar  
Wide-issue superscalar processor with speculative execution 

and multilevel on-chip caches  

Superspeculative Architecture 
Wide-issue superscalar processor with aggressive data and 

control speculation and multilevel on-chip caches  

Trace Processor 
Multiple distinct cores, that speculatively execute program 

traces, with multilevel on-chip caches  

Simultaneous Multithreaded 
(SMP) 

Wide superscalar with support for aggressive sharing among 
multiple threads and multilevel on-chip caches  

Chip Multiprocessor (CMP) 
Symmetric multiprocessor system with shared second level 

cache  

RAW 
Multiple processing tiles with reconfigurable logic and 

memory, interconnected through a reconfigurable network  

 
 
 
 

The Key Methods for Processor Performance Increasing  
                                                                                                           by Behrooz Barhami  
 

 

Established 
Architectural Metod  

 

 

Improvement 
Factor  

 

 

New Architectural 
Trend  

 

 

Improvement 
Factor  

 

 

Pipelining 
(superpipelining)  
Cache memory  
(2-3 levels)  
RISC and related ideas  
Multiple instruction 
issue (superscalar)  
ISA extensions  
(for multimedia)  
 

 

3 – 8  
 

2 – 5  
 

2 – 3  
2 – 3  

 
1 – 3  

 

 

Multithreading  
(super-, hyper-)  
Speculation and value 
prediction  
Hardware acceleration  
Vector and array 
processing  
Parallel/distributed 
computing  
 

 

2 – 5?  
 

2 – 3?  
 

2 -10?  
2 – 10?  

 
2 – 1000?  
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DEVELOPMENT TRENDS IN TECHNOLOGY  

 

ARCHITECTURE 

DESIGN 

ENVIRONMENT
TECHNOLOGY

MICROPROCESSOR 

SYSTEM 

 
 
 
 
Technology – the process of applying scientific knowledge to industria process.  
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Computer Technology Development  
 
 
 
                              ENIAC                 × n                            Alpha 21164a  
                     [10 decimal digits]                                               [64 bits]  
Introduced             1946                                                              1996  
 
Complexity           17468                 > 102 (0,53×103)               9,3×106  
                               tubes                                                          transistors  
// 70000 resistors,  
10000 capacitors,  
1500 relays,  
6000 manual switches,  
5×106 soldered joints //  
 
Footprint             1,67×102 m2          > 10-6 (1,25×10-6)            2,09×10-4 m2  
 
Weight                  3×104 kg            > 10-6 (3,33×10-6)          <1×10-1 kg  
 
Clock speed*         105 Hz               > 103 (5×103)                   5×108 Hz  
 
Power **             1,6×105 W           > 10-4 (23,8×10-3)            3,8×10 W  
 
Cost                     0,5×106 $             > 10-3 (3×10-3)                 1,5×103 $  
 
*   5000 additions per second, 537 multiplications per second, 38 divisions per second.  
** Approximately 50 tubes had to be replaced a day!  
 
 

Motor-car:  
 

 Speed                  110 km/h             103                        1,1×105 km/h  
Weight                    1 T                   10-6                           1,0 g  

 Power consumption (fuel)  
                                0,1 l/km            10-4                            10-5 l/km  
 
 

Performance Improvement in Computation  
 
1. Data and instruction pipelining.  
2. Multiple processors.  

a. Coarse-grained parallelisl ⇒ processor clusters;  

b. Medium-grained parallelism ⇒ symmetric multiprocessors;  

c. Fine-grained parallelism ⇒ VLIW processors;  
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6. Hardware improvements since 1946 (approximately):  

a. CPU clock speed ⇒ 104,5 times;  

b. Bus clock speed ⇒ 103 times;  

c. RAM latency ⇒ >105 times.  
 

Hardware technology improvements enable two evolutionary paths for computers:  
 

Constant price, increasing performance;  
Constant performance, decreasing cost.  
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IC Technology Development  
 
 

Intel Corporation  
 

     Year        Resolution        Wafer size          Memory             Processor  
                           (µm)                 (mm)               DRAM  
    1973                   8                     75                    1 kbit                  8080 (1974)  
    1975                   5                     75                    4 kbit                  80186  
    1978                   2                   100                  16 kbit                   
    1982                1,8                   100                  64 kbit                  80286  
    1985                1,5                   150                    1 Mbit                 80386  
    1989             0,8-1,0               150                    4 Mbit                 80486  
    1994                 0,8                  200                  16 Mbit                 Pentium  
    1996                 0,4                  200                  64 Mbit                 Pentium Pro  
    1998                 0,2                  300                  64 Mbit                 Celeron  
    2000                0,18                 300                256 Mbit                 Pentium 4  

 
General Development Dynamics  

 

 
 
 
 

Gordon Moore’s Laws  
(Moore's First Law from 1965)  

 
Chip complexity (as defined by the number of active elements on a single semiconductor 
chip) will double about every device generation (usually taken as about 18 months).  
 
For Moore’s Law to remain valid, feature size must continue to be reduced, but since the reduction 
is insufficient in and of itself, chip size must continue to increase.  
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Microprocessor Development Trends  

 

 
 

 

Up to 2004  
 

 

2005 – 2015  
 

 

New generation every  
Reduction in gate length (per 2 years)  
Reduction in gate oxide thickness (per 2 years)  
Reduction in voltage (per 2 years)  
Reduction in interconnect horizontal dimensions 
(per 2 years)  
Reduction in interconnect vertical dimensions  
(per 2 years)  
Add metal layer  
 

 

2 years  
35%  
30%  
15%  

 
30%  

 
15%  

1 layer per two 
generations  

 

 

2-3 years  
30%  

 
15%  

 
30%  

 
15%  

1 layer per 
generation  

 

 
 
 

Technology and Advanced Microprocessors  
 
At the past decade, microprocessors have been improving in overall performance at a rate of 
approximately 50 – 60% per year.  
The performance improvements have been mined from two sources:  
1. Increasing clock rates by scaling technology and by reducing the number of levels of logic per 
cycle;  
2. The increasing number of transistors on a chip, plus improvements in compiler technology, to 
improve throughput.  
 
 
 

Scaling in General  
 
Scaling theory is called for reducing transistors dimensions (scale factor S (where S<1).  
 

The result would be a transistor whose gate delay is reduced by S1, area is reduced by S2, 
and amount of energy used each time a gate switches ON or OFF is reduced by S3.  

 

Reduced feature sizes have provided two benefits:  
Since transistors are smaller, more can be placed on a single die, providing area fore 
more complex microarchitectures.  
Technology scaling reduces transistor’s gate length and hence transistor’s switcing  
time.  

 

To support the transistor density improvements, minimum feature sizes have had to be reduced 
by ~0,7× every three year.  
 

New-generation process technologies generally come out every three years.  
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Using 0,7x as the scale factor S, gives a transistor area improvement of 0.49×, a gate delay 
improvement of 0,7×, and an energy reduction of 0,34× for every new process generation.  
CMOS technologies allow digital circuits to be designed with signals that have full voltage 
swing and low standby (leakage) current.  
 

Transistor leakage is the greatest problem facing continued scaling.  
 

The average power dissipation (P) of a digital CMOS circuit consists of a static (Pstat) and a 
dynamic (Pdyn) components:  
 

P = Pstat + Pdyn  
 

The static power (Pstat) characterizes circuits that have a constant source current between the 
power supplies.  
The dynamic power Pdyn is the dominant part of the power dissipation in CMOS circuits, and 
it is composed of three terms:  
 

Pdyn = Pswitching + Pshort-circuit + Pleakage  
 

The switching power (Pswitching) is due to the charge and discharge of the capacitances 
associated with each node in the circuit. The short-circuit power (Pshort-circuit) derives from the 
short-circuit current from the supply to the ground voltage during gates output transitions. The 
leakage power (Pleakage) is due to the leakage currents in MOSFET transistors.  
So the average power consumption of a circuit (transistor) is equal to:  
 

P = 0,5 × C × U2 × f + Ioff × U,   where  
 

f is the clocking frequency; C is the gate-oxide capacitance; Ioff is the total transistor leakage 
current and U is the power supply voltage.  
 
 

 

Interconnections Scaling  
 
1. Interconnects don't have the same scaling properties as transistors. Interconnects are  
     quickly becoming as critical as transistors in determining overall circuit performance.  
2. The average width of interconnections is decreasing to provide the smaller dimensions needed to  
    pack in more transistors and wires.  
3. The speed at which a signal can propagate down a wire is proportional to the product of the  
    wire resistance (R) and the wire capacitance(C). This speed is named as the wire's RC  
    delay. Increased R or C results in increased wire delay and slower signal propagation.  
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Reducing the feature sizes has caused wire width and height to decrease; resulting in larger wire 
resistance due smaller wire cross-sectional area unfortunately wire capacitance has not decreased 
proportionally.  
4. By convention the wiring layers are subdivided into three categories:  
 

1. Local, for connection within a cell;  
2. Intermediate or mid-level, for connection across a module;  
3. Global or top-level metal layers, for chip-wide communications.  

 

5. To reduce communication delays, wires are both wider and taller in the mid-level and top-level  
     metal layers.  
 

 

  Gate  
length  
  (nm)  
 

 

 Metal ρ 
(µΩ/cm) 

 

            Mid-level Metal  
   Width         Rwire            Cwire  
    (nm)      (mΩ/µm)     (fF/µm)  
 

 

          Top-level Metal  
   Width         Rwire           Cwire 

    (nm)       (mΩ/µm)    (fF/µm) 
 

   250       3,3       500       107     0,215       700        34     0,256  
   180       2,2       320       107     0,253       530         36     0,270  

   130       2,2       230       188     0,263       380         61     0,285  

   100       2,2       170       316     0,273       280       103     0,296  

     70       1,8       120       500     0,278       200       164     0,296  

     50       1,8         80      1020     0,294       140       321     0,301  

     35       1,8         60      1760     0,300         90       714     0,317  
 

6. New interconnect materials are needed to improve performance without increasing the number  
    of metal layers.  
 

7. Another way to improve interconnect performance is to reduce the capacitance between wires.  

Delay time 

nS
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um 0 
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Intrinsic gate delay 

Effect of interconnect scaling 
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Shrinking linewidths not only enables more components to fit onto IC (typically 2× per linewidth 
generation) but also lower costs (typically 30% per linewidth generation).  
Shrinking linewidths have slowed down the rate of growth in die size to 1,14× per year versus 
1,38× to 1,58× per year for transistor counts, and since the mid nineties accelerating linewidth 
shrinks have halted and even reversed the growth in die size.  
 
 
 

Wire Delay Impact on Microarchitecture  
 
1. The widening gap between the relative speeds of gates and wires will have a substantial impact 

on microarchitectures.  
2. With increasing clock rates, the distance that a signal can travel in a single clock cycle 

decreases.  
3. When combined with the modest growth in chip area, the time to send a signal across one 

dimension of the chip will increase dramatically.  
4. Clock scaling is more significant than wire delay for small structures, while both wire delay 

and clock scaling are significant in larger structures.  
5. The large memory-oriented elements will be unable to continue increasing in size while 

remaining accessible within one clock cycle.  
6. For each technology the access time increases as the cache capacity increases.  
7. The most significant difference between a cache and a register file is the number of ports.  
8. If the number of execution units is increased, the distance between the extreme units will also 

increase.  
9. Large monolithic cores have no long-term future in deep submicron fabrication processes.  
10. The on-chip memory system is likely to be a major bottleneck in future processors.  
11. Future microprocessors must be partitioned into independent physical regions and the latency 

for communicating among partitions must be exposed to the microarchitecture and possibly to 
the ISA.  

 
 
 

Energy per Instruction (EPI)  
 
 
The goal of modern processor is to deliver as much performance as possible while keeping power 
consumption within reasonable limits.  

The power efficiency of a processor can be measured by Energy per Instruction (EPI).  
 

{P [W] = E [J] / t [s]; Power (P) is the rate of using energy (E).}  
 

It is the amount of energy expended by processor for each executed instruction.  
EPI is measured in Joules per Instruction (Joules / Instruction).  

 
EPI is related to other commonly used power-efficiency metrics as for performance / Watt or  
MIPS / Watt.  
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EPI = Joules / Instruction  
 

EPI = (Joules / second) / (Instruction / second) = Watt / IPS  
 

EPI = Watt / IPS  
IPS – Instructions per Second  

 
EPI and MIPS / Watt do not consider the amount of time needed to process an instruction from 
start to finish. The EPI is a function of energy (E) expended per instruction when the instruction is 
processed.  

E ≈≈≈≈ C ×××× U2
,   where  

C – switching capacitance; U – power supply voltage.  
 

EPI is influenced by several factors, as for:  
 

1. Processor microarchitecture   ⇒⇒⇒⇒   C;  

2. Process technology   ⇒⇒⇒⇒   C, U (bounds);  

3. Environment (supply voltage)   ⇒⇒⇒⇒   U.  
 

In each new processor generation has reduced both C and U compared to the prior generation.  
The combination of limited instruction parallelism suitable for superscalar issue, practical limits to 
pipelining, and a power limits has limited future speed increases within conventional processor 
cores. Microprocessor performance increases will slow dramatically in the future.  
 
 
 
 
 
Multi-threaded software that can take advance of chip multiprocessors or CMP inherently will 
have phases of sequential execution.  
 

� During phases of limited parallelism (low IPS) the CMP will spend more EPI.  
� During phases of high parallelism the CMP will spend less EPI.  
� In both scenarios power is fixed.  

 

When a two-way CMP replaces a uniprocessor, it is possible to achieve essentially the same or 
better through put on server-oriented workloads with just half of the original clock speed.  
It is because request processing time is more often limited by memory or disk performance than by 
processor performance.  
The lower clock rate allows designing the system with a significantly lower power supply 
voltage, often a nearly linear reduction.  
 

For a chip-multiprocessor it is necessary to parallelize most latency-critical software into multiple 
parallel threads of execution to take advantage of a CMP. CMPs make information handling 
process easier than with conventional multiprocessors.  
The goal is to minimize the execution times of multi-threaded programs, while keeping the CMP 
total power consumption within a fixed budget.  
 

The next stage of development for microprocessor systems is basis on the  

CMP (Chip Multiprocessor).  
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Summary  
 
Energy consumption in general is a sum of two components: active energy and idle energy.  
Minimizing the idle energy consumption is relatively simple: the processor enters a deep-sleep 
power state, stops the clocks, and lowers the operating voltage to the minimum.  
Minimizing the active energy consumption is more complex. A very slow execution consumes less 
power for a longer period of time, while heavy parallelism reduces the active time but increases the 
active power.  
 

Energy_active = Power_active × Time_active  
Energy_active = Power_active / Performance_active  

 
The processor’s performance benefit must be greater than the additional power consumed.  

 
 

 
Literature  

Vasanth Venkatachalam, Michael Franz. Power Reduction Techniques for Microprocessor 
Systems. ACM Computing Surveys, Vol. 37, No. 3, September 2005, pp.195-237.  
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Dual and Multicore Processors  
 
 
Core – the core set of architectural, computational processing elements that provide the 
functionality of a CPU.  
 
 

Dual Core Processor  
 
A dual core processor is a CPU with two separate cores on the same die, each with its own cache. 
Each core handles incoming data strings simultaneously to improve performance.  
The dual-core type processors fall into the architectural class of tightly-coupled multiprocessors.  
 

Advantages and Disadvantages of Dual-core Processors  
 

 

Advantages  
 

 

Disadvantages  
 

 

1. Processor uses slightly less power than 
two coupled single-core processors 
(because of the increased power required 
to drive signals external to the chip and 
because the smaller silicon process 
geometry allows the cores to operate at 
lower voltage)  
2. The cache coherency circuitry can 
operate at much higher clock rate than is 
possible if the signals have to travel off-
chip.  
3. The design requires much less printed 
circuit board (PCB) space than multi-
chip designs.  
 

 

1. Processor requires operating systems support 
to make optimal use of the second computing 
resource.  
2. The higher integration of the dual-core chip 
drives the production yields down and it is more 
difficult to manage thermally.  
3. Scaling efficiency is largely dependent on the 
application (applications that require processing 
large amounts of data with low computer-
overhead algorithms may have I/O bottleneck).  
4. If a dual-core processor has only one memory 
bus, then the available memory bandwidth per 
core is half the one available in a dual-processor 
mono-core system.  
 

 
 

Multi Core Processor 
 
A multi-core architecture is actually a symmetric multiprocessor (SMP) implemented on a 
single VLSI circuit.  
The goal is to allow greater utilization of thread-level parallelism (TLP), especially for 
applications that lack sufficient instruction-level parallelism (ILP) to make good use of superscalar 
processors.  
It is called chip-level multiprocessing (CMP) or chip-level multithreading (CMT).  
For instructions execution a simultaneous multithreading (SMT) technique is exploited in these 
processors.  
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Dual core SMT allows multiple threads to execute different instructions in the same clock cycle.  
It means that the processor has the ability to fetch instructions from multiple threads in a cycle and 
it has a larger register file to hold data from multiple threads.  
 
 

 
 

Single-core, Multiprocessor, Intel’s Hyper-Threading and Multi-Core Architectures  
 
 

Multi-threaded applications running on multi-core platforms have different design 
considerations than do multi-threaded applications running on single-core platforms.  

 
On single-core platforms, assumptions may be made by the developer to simplify writing and 
debugging a multi-threaded application. These assumptions may not be valid on multi-core 
platforms. There are two areas that highlight these differences:  
 

1. Memory caching,  
2. Thread priority.  

 
In the case of memory caching, each processor core may have its own cache. At any point in time, 
the cache on one processor core may be out of sync with the cache on the other processor core.  
On multi-core platforms, the scheduler may schedule both threads on separate cores. Both threads 
may run simultaneously independently.  
 
 

Multi-core Pocessor Prformance  
 
The Amdahl’s law states, that decreasing the serialized portion by increasing the parallelized 
portion is of greater importance than adding more processor cores.  
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Only when a program is mostly parallelized does adding more processors help more than 
parallelizing the remaining code.  
To make Amdahl’s Law reflect the reality of multi-core systems, rather than the theoretical 
maximum, system overhead from adding threads should be included:  
 

 

Where S is the time spent executing the serial portion of the parallelized version,  
n is the number of processor cores and H(n) is the overhead.  
The overhead consists of two portions:  
 

 The operating system overhead5  
 Inter-thread activities.  

 

If the overhead is big enough, it offsets the benefits of the parallelized portion.  
The important implication is that the overhead introduced by threading must be kept to a 
minimum.  
 
 
 

Intel’s Hyper-Threading (HT) Technology versus Multi-core Designs  
 
The HT Technology and multi-core designs differ significantly and deliver different performance 
characteristics. The key difference lies in how a program’s instructions are executed.  
The performance of HT Technology is limited by the availability of share resources to the two 
executing threads. In multi-core chips each core has the resources required to run without blocking 
resources needed by the other threads.  
 
 
 

Example  
 
IBM`s dual-core on a single die Power 6 processor run at speeds between 4-5 GHz with a total of  
8 Mbytes L2 cache and a 75 GB/s peak to main memory. The processor is built in 65-nm process 
using IBM`s silicon-on-insulator (SOI) technology. IBM applies new technology in variable gate 
lengths and variable threshold voltages to squeeze maximum performance per Watt. The chip can 
be fully operated at 0,8V.  
 
In 2006 Intel developed a prototype 80-core chip that can process some 1,8 trillion operations per 
second. There is a cache memory under each core. Chips power consumption is handled by 
division of each tile //protsessortuum// into separate regions that can be powered individually.  

                                                 
5 Overhead  –  a. An extra code that has to stored to organize the program.  
    //ballast//      b. The time a processor spends doing computations that do not contribute  
                             directly to prograess of any user tasks in the system.  
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The 80-core chip achieves over a teraflop of performance while power consuming is about  
62 Watts.  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

THE NEXT STEP?  
 
 
 

Thread 1 Thread 1 Thread 2Thread 2 

Core Core Core 

Processor with 

HT Technology 

One core, two executing threads, 
one executing pipeline 

One chip, multiple (two) cores, 
multiple (two) execution pipelines 

Chip Chip 

Multi-core 

Processor 
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Computer Architecture Formulas  
 
 
1.  Amdahl’s Law  
 

Speedup = (Execution old time) / (Execution time new) =  

s

f
f +−

=
)1(

1
  

 
2.  CPUtime = Instruction count × Clock cycles per instruction × Clock cycle time  
 

CPUtime = IC × CPI × tCLK  
CPI = IPC-1  

 
3.  Performance = 1 / Execution time  
 
4.  Average memory access time (AMAT) = Hit time × Miss rate × Miss penalty  
 
5.  Total CPI = Base CPI + Memory stall cycles per instruction  
 
6.  Misses per instruction = Miss rate × Memory accesses per instruction  
 
7.  Cache index size: 2index = Cache size / [(Block size) × (Set associativity)]  
 

8.  Pipeline speedup = 
)_()_(1

_

penaltyBranchfrequencyBranch

depthPipeline

×+
  

 
9.  The total execution time (Texe) = IC × CPI × tclk + TMem + TI/O  
 
10.  Power static = Currentstatic ×Voltage  
 
11.  Power dynamic = 0,5 × Capacitive load × Voltage2 × Frequency switched  
 
12.  Amdahl’s Law for multi-core systems  
 

Speedup = 
)(

1

1

nH
n

S
S +

−
+

  

H(n) – overhead  
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GLOSSARY  
 
 
 
Atomic instruction --- an instruction which can not be interrupted (cannot be split up).  
                                      Instruction must be performed entirely or not at all (as for  
                                      "test-and-set" instructions). These instructions usually are  
                                       not atomic at bus level, only at the CPU instruction level.  
 

Aliasing -- a situation in which the same object is accessed by two addresses.  
 

Architectural registers – the instruction set visible registers of a processor.  
 

Associativity - the number of locations where a single memory address may be stored in a  
                         cache memory.  
 

Basic block --- a sequence of instructions without branches (except possibility at the end)  
                          and without branch targets or branch labels (except possibility at the beginning).  
 

Benchmark --- program or program fragment and related data inputs that are executed to test  
                          the performance of a hardware component, a group of hardware or software  
                          components or an entire microprocessor system (MPS).  
 

Branch Target Buffer - a memory cache supporting branch prediction by holding  
               BTB                  information on the past behavior of recent branches and their target  
                                         addresses.  
 

Bus --- communication channel shared by multiple devices within a MPS or network.  
 

Bus cycle --- period time required to perform one data transfer operation on a bus.  
 

Cache --- area of high-speed memory that holds portions of data also held within another  
                 storage device.  
 

Card --- a printed-circuit panel (usually multilayer) that provides the interconnection and power  
               distribution to the electronics on the panel, and provides interconnect capability to the  
                next level package. It plugs into a mother board printed-circuit board.  
 

Central Processing Unit (CPU) --- computer processor responsible for fetching, interpreting,  
                                                           and executing program instructions.  
 
Chipset  -  a pair of chips responsible for communication between the processor and other  
                   components (between the high-speed components and the other with lower-speed  
                   components) on the motheboard.  
 

Clock cycle --- frequency at which a system clock generates timing pulses.  
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Clock jitter  –  variation in clock frequency, causing some clock cycles to be longer or shorter  
//taktivärin//      than others.  
 

Clock rate --- a.  rate at which clock pulses are generated by a clock.  
                        b.  with respect to a CPU , the time required to fetch and execute the simplest instruction.  
 

Control unit --- component of a CPU that is responsible for moving data,  
                           access instructions and controlling the ALU.  
                           In a processor the part that retrieves instructions in proper sequence,  
                           interprets each instruction, and applies the proper signals to the  
                           arithmetic and logic unit and other parts in accordance with this interpretation.  
 

Datapath – the component of the processor that performs arithmetic operations.  
 

Die --- integrated circuit chip as cut (diced) from finished wafer.  
 

Embedded computer -– a computer inside another device used for running one predetermined  
                                         application or collection of software.  
 
Engine --- a.  a specialized processor (graphics processor).  
                  b.  a software that performs a very specific and repetitive function in contrast to an  
                       application that has many functions offered to the user (search engine, database engine).  
 

Etching  -  physical and chemical means of removing a material layer.  
 

Extensibility --- the ease with which a third party is able to add capabilities to software or 
hardware.  
//laiendatavus//  
 

Granularity --- refers to the number of instructions that can be performed concurrently before  
                           some form of synchronization needs to take place. It is associated with the  
                           ratio between computation and communication.  
 

Fetch cycle --- portion of CPU cycle in which an instruction is loaded into the instruction  
                         register and decoded.  
Instruction --- the specification of an operations and the identification of any associated operands.  
 

Instruction set --- the complete set instructions recognized by a given computer or provided  
                               by a given programming language.  
 

Instruction window – the set of instructions that is examined for simultaneous execution,  
 

Interoperability  ---   the ability of two or more computer systems to exchange information  
//koostalitlusvõime//    and make o use of it transparently.  
 

Functional unit --- an entity of hardware or software or both, capable of accomplish  
                                a specified purpose.  
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Gate --- processing device that implements a primitive Boolean operations or processing  
               function (AND, OR) by physically transforming one or more input signals.  
 

Instruction level parallelism – the ability of individual machine language instructions from a  
                    ILP                         single computer program to be executed in parallel.  
                                                    The amount of ILP determines the maximum instructions per  
                                                    cycle possible for a particular program.  
 

I/O port --- communication pathway from the CPU to a peripheral device.  
 

Level one (L1) cache --- within-CPU cache when all three cache types are used.  
 

Level two (L2) cache --- primary storage cache implemented within the same chip as a processor.  
 

Level three (L3) cache --- when three levels of primary storage cache are used, the cache  
                                             implemented outside the microprocessor.  
 

Linear addressing space --- logical view of a secondary storage or I/O device as a sequentially  
                                               numbered set of storage locations.  
 

Logical access --- access to a storage location within a linear address space.  
 

Loop unrolling – a technique to get more performance from loops that access arrays, in which  
                              multiple copies of the loop body are made and instructions from different iterations  
                              are scheduled together.  
 

Machine --- a computer, system or processor made up of various components connected  
 //masin//       together to provide a function or perform a task.  
//automaat//  
 

Machine instruction --- an instruction that can be directly executed by a computer.  
 

Microarchitecture – the overall design details of a processor that are not visible to the software.  
 

Microcode --- a.  a collection of microinstructions, comprising part of, all of,  
                              or a set of microinstructions.  
                         b.  a low-level set of instruction which performs basic, simple tasks.  
                              On one level t can be seen as a programming language, whilst at  
                              another level it is merely dynamic equivalent to a set of hard-wired circuits.  
 

Model --- an abstract representation of a system or other physical reality.  
 

Multi-chip module (MCM) --- an integrated circuit comprising of several chips all packaged  
                                                     within the same package.  
 

Out-of-order execution – execution instructions in a different order than specified by the  
        OOO execution         software in order to improve performance.  
 

Peripheral device --- device on a system bus other than the CPU and primary storage.  
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Pipeline  -  the series of steps required to fetch, decode, execute, and store the results of a  
                    processor instruction.  
 

Platform --- a standard type of hardware that makes up a particular range of computer.  
 

Platform independence --- the fact that software or network can work or connect to different  
                                              types of incompatible hardware.  
 

Portability ----  the ease with which applications software can be transferred to an environment  
//teisaldatavus//  from another while maintaining its capabilities.  
//mobiilsus//  
 

Predication --- a mean of conditionally executing instructions.  
 

Processor --- any device capable of performing data transformation operations.  
                       In a computer it is a functional unit that interprets and executes instructions.  
                       A processor consists at least an (instruction ) control unit and an  
                       arithmetic and logic unit.  
 

Processor core --- the part of microprocessor that reads instructions from memory  
                              and executes them, including the instruction fetch unit, arithmetic  
                              and logic unit and the register bank. It excludes optional coprocessors,  
                              caches and memory management unit.  
 

Profiling --- it is a form of a dynamic progam analysis.  
The goal of this analysis is to determine which sections of a program to optimize.  
Profiling in SW engineering, performance anlysis is the investigation of a program`s 
behavior using information gathered as the program executes.  

 

Register alias table – a table listing which physical registers are currently holding the values  
               RAT             of the architectural registers.  
 

Register renaming  -  the microarchitecural algorithm assigning architectural registers to  
                                    different physical registers in order to eliminated false data dependencies  
                                    and improve performance.  
 

Reorder buffer - the functional unit in an out-of-order processor responsible for committing  
        ROB             results in the original program order 
 

Scalability -------  the ease with which an existing system's performance can be increased  
//mastaabitavus//   or decreased as changes in the application demand.  
//skaleeritavus//  
 

Spatial locality - the tendency of memory accesses to a particular address to be more likely  
                             if nearby addresses have recently been accessed.  
 

Split cache – a scheme in which a level of the memory hierarchy is composed of two independent  
                       caches that operate in parallel with each other with one handling instructions and  
                       with one handling data.  
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Superscalar  -  processors capable of completing more than one instruction per cycle.  
 

System bus --- bus shared by most or all devices in a MPS.  
 

System architecture --- MPS components and the interaction among them.  
 

System design --- process of determining the exact configuration of all hardware and software  
                              components in an information system.  
 
System on silicon (SoC) - all electronics for a complete, working product contained on a single chip.  
                                            While a computer on a chip includes all the hardware components  
                                             required to process, a SoC includes the computer and ancillary  
                                             electronics.  
 

Task --- in a multiprogramming or multiprocessing environment one or more sequences of  
               instructions treated by a control program as an element of work accomplished by a  
               computer.  
 

Temporal locality  -  the tendency of memory accesses to a particular address to be more  
                                   likely if that address has recently been accessed.  
 

Thread --- subcomponent of a process that can be independently scheduled and executed.  
 

Trace cache - a cache memory containing already partially decoded instructions, which may  
                        be stored in program execution order rather than the order they were original  
                        stored in main memory.  
 

Wafer --- a flat round piece of semiconductor used as the starting material for making integral  
                 circuit.  
 

Vectorizable --- the property of a computer program, or program segment, that allows for the  
                           simultaneous execution of operations on different data values (to accomlish the  
                           work in parallel).  
 

Virtual (adj) --- pertaining to something that appears to have some characteristics of something  
                            else for which it serves as a surrogate.  
 

Virtual machine --- a portion of a computer system or of a computer’s time that is controlled by  
                                  an operating system and functions as though it were a complete system,  
                                  although in reality the computer is shared with other independent operating  
                                  systems.  
 

Virtual resource --- resource visible to a user or program, but not necessarily available at  
                                  all times or physically extant.  
 

WISC (Writable Instruction Set Computer) – a CPU design that allows a programmer to add extra  
                                                                           machine code instructions using microcode, to  
                                                                           customize the instruction set.  
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Working set --- the set of memory locations referenced over a fixed period.  
 

Workload -----------  a.   a suite of programs that can be run and whose execution time can be 
measured.  
//kasulik koormus//     b.   the mixture of user programs and operating system commands.  
//töömaht//                  c.   the amount of work which a computer has to do.  
 

Workspace --- a space on memory which is available for use or is being used currently by an operator.  
 

z-buffer --- an area at memory used to store the z-axis information for a graphics object displayed  
                    on screen.  
 

ZISC --- Zero Instruction Set Computer  
               ZISC is a technology based on ideas from artificial neural networks. It is a chip  
               technology based pure pattern matching and absence of instructions in classical sense.  
               The first generation of ZISC contains 36 independent cells that can be thought of as  
               neurons (parallel processors).  
               Each of these compare an input vector of up to 64 bytes with similar vector stored in the  
               cells memory. If the input vector matches the vector in cells memory, the cell “fires”.  
               The output signal contains the number of the cell that had matched (or no matches occurred).  
 
 
 
 
 
 
 

Integer Formats (32-bit word)  

Format  Binary Range  Decimal Range  

Unsigned integer  0 to 232-1  0 to 4294967295  

Signed integer  -231 to 231-1  -2147483648 to 2147483647  

 
 
 

Floating-point Formats (IEEE std. 754)  

 
Precision  

Size  
(bits)  

Sign  
(bits)  

Exponent  
(bits)  

Fraction  
(bits)  

Binary  
Range  

Decimal  
Range  

 

Single  
 

32  
 

1  
 

8  
 

23  
 

2-126 to 2127  
1,18×10-38 to 

3,40×1038  
 

Double  
 

64  
 

1  
 

11  
 

52  
2-1022 to 

21023  
2,23×10-308 to 

1,79×10308  
 

Extended  
 

 

80  
 

1  
 

16  
 

63  
2-16382 to 

216382  
3,37×10-4932 to 

1,18×104932  
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Acronyms  
 
 
 
A/D [A to D] – Analog to Digital  
AI [A-I] – Artificial Intelligence  
ALU [al-loo or A-L-U] – Arithmetic (and) Logic Unit  
AMD [A-M-D] – Advanced Micro Devices  
ANSI [an-see] – American National Standards Institute  
API [A-P-I] – Application Program(ming) Interface  
ARM [arm] – Advanced (Acorn) RISC Machines  
ASIC [a-sick] – Application Specific Integrated Circuit  
ASCII [ass-key] – American Standard Code for Information Interchange  
 
BCD [B-C-D] – Binary Coded Decimal  
BEDO [bee-doh-ram] – Burst EDO RAM  
BGA [B-G-A] – Ball-Gird Array  
BICMOS [bi-sea-moss] – Bipolar Complementary Metal Oxide Semiconductor  
BIOS [bye-oh-sss] – Basic Input/Output System  
BNC [B-N-C] – Bayonet Nut Connector  
 
CAD [cad] – Computer-Aided Design  
CAE [C-A-E] – Computer-Aided Engineering  
CCD [C-C-D] – Charge-Coupled Device  
CCITT [C-C-I-T-T] – Consultative Committee for International Telephony and Telegraphy  
CD-PROM [C-D-prom] – Compact Disk-Programmable Read Only Memory  
CD-R [C-D-R] – Compact Disk-Recordable  
CD-RW [C-D-R-W] – Compact Disk-Rewritable  
CDI [C-D-I] – Common Data Interface  
CDRAM [C-D-ram] – Cached Dynamic Random Access Memory  
CGA [C-G-A] – Color Graphics Adapter  
CISC [sisk] – Complex Instruction Set Computer  
cps [C-P-S] – characters per second  
CPU [C-P-U] – Central Processing Unit  
CMOS [cee-moss] – Complementary Metal-Oxide Semiconductor  
CRC [C-R-C] – Cyclic Redundancy Check  
CRT [C-R-T] – Cathode-Ray Tube  
 
DAC [D-A-C] – Digital-to-Analog Converter  
DFM [D-F-M] – Design For Manufacturing  
DIMM [dim] – Dual In-line Memory Module  
DIP [dip] – Dual In-line Package  
DLL [D-L-L] – Dynamic Link Library  
DMA [D-M-A] – Direct Memory Access  
dpi [D-P-I] – dote per inch  
DRAM [dee-ram] – Dynamic Random Access Memory  
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DSP [D-S-P] – Digital Signal Processor  
DSU [D-S-U] – Data Service Unit  
DVD [D-V-D] – Digital Versatile (Video) Disk  
DOS [doss] – Disk Operating System  
DUI [D-U-I] – Digital Video Interface  
ECC [E-C-C] – Error Correction Code  
EDORAM [E-D-O-ram] – Extended Data-Out Random Access Memory  
EDRAM [E-D-ram] – Enhanced Dynamic Random Access Memory  
EEPROM [E-E-prom] – Electrically Erasable Programmable Read-Only Memory  
EGA [E-G-A] – Enhanced Graphics Adapter  
EIDE [E-I-D-E] – Enhanced Intelligent Drive Electronics  
EISA [ee-suh] – Extended Industry Standard Architecture  
EMM [E-M-M] – Extended Memory Manager  
EPP [E-P-P] – Enhanced Parallel Port  
EPROM [ee-prom] – Erasable Programmable Read-Only Memory  
ESDI [E-S-D-I] – Enhanced System Device Interface  
 
FAMOS [famous] – Floating ate Avalanche MOS  
FAT [fat] – File Allocation Table  
FDD [F-D-D] – Floppy Disk Drive  
FDDI [F-D-D-I] – Fiber Distributed Data Interface  
FIFO [fife-oh] – Fist In, First Out  
FLOPS [flops] – FLoating-point Operations per Second  
FPU [F-P-U] – Floating-Point Unit  
FRAM [F-ram] – Ferroelectric RAM  
 
GDI [G-D-I] – Graphics Device Interface  
GIF [jiff] – Graphical Interchange Format  
GUI [gooey] – Graphical User Interface  
 
HDD [H-D-D] – Hard Disk Drive  
 
I/O [eye-oh] – Input/Output  
ICA [I-C-A] – Independent Computing Architecture  
IDE [I-D-E] – Integrated Drive Electronics  
IEEE [eye triple-E] – Institute of Electrical and Electronics Engineers  
IOS [I-O-S] – Input Output System  
IRQ [I-R-Q] – Interrupt Request  
ISA [eye-suh] – Industry Standard Architecture  
ISO [I-S-O] – International Organization for Standardization  
 
JPEG [jay-peg] – Joint Photographic Experts Group  
 
kb [kilobit] – kilobit  
KB [K-B] – Kilobyte  
Kbps [K-B-P-S] – Kilobits per second  
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LAN [lan] – Local area Network  
LCD [L-C-D] – Liquid Crystal Display  
LED [L-E-D] – Light Emitting Diode  
LIFO [life-oh] Last In, Fist Out  
LPT [L-P-T] – Local Printer Terminal  
 
Mb [megabit] – Megabit  
MB [M-B] – Megabyte  
MCA [M-C-A] – Micro Channel Architecture  
MCI [M-C-I] – Media Control Interface  
MFLOPS [mega-flops] – Millions of FLoating-point OPerations per Second  
MIDI [middy] – Musical Instrument Digital Interface  
MIPS [mips] – Millions of Instructions per Second  
MMU [M-M-U] – Memory Management Unit  
MOS [moss] – Metal Oxide Semiconductor  
MPEG [em-peg] – Motion Picture Experts Group  
MTBF [M-T-B-F] – Mean time Between Failures  
 
NOP [no-op] – No Operation  
NUMA [new-mah] – Non-Uniform Memory Access  
NVRAM [N-V-ram] – Non-Volatile RAM  
 
OCR [oh-see-R] – Optical Character Recognition  
 
PSRAM [P-S-ram] – Pseudo-Static RAM  
PAL [pal] – Programmable Logic Array  
PBSRAM [P-B-S-ram] – Pipelined Burst Static RAM  
PCB [P-C-B] – Printed Circuit Board  
PCI [P-C-I] – Peripheral Component Interface  
PGA [P-G-A] – Pin (Pad) Grid Array  
PIO [P-I-O] – Programmed Input/Output  
PIM [pimm] – Processor In Memory  
PISO [P-I-S-O] – Parallel In/Serial Out  
PLA [play] – Programmable Logic Array  
PLD [P-L-D] – Programmable Logic Device  
PRAM [pram] – Parameter RAM  
PROM [prom] – Programmable Read-Only Memory  
 
RAID [raid] – Redundant Arrays of Independent Disks  
RAMDAC [ram-dac] – Random Access Memory Digital-to-Analog Converter  
RISC [risk] – Reduced Instruction Set Computer  
ROM [rom] – Read-Only Memory  
 
SCSI [scuzzy] – Small computer System Interface  
SDRAM [S-D-ram] – Synchronous Dynamic RAM  
SGRAM [S-G-ram] – Synchronous Graphics RAM  
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SIMD [simmed] – Single Instruction Multiple Data  
SIMM [simm] – Single In-line Memory Module  
SLDRAM [S-L-D-ram] – Sync Link DRAM  
SOC [S-O-C] – System On-a-Chip  
SPARC [spark] – Scalable Processor Architecture  
SRAM [es-ram] – Static Random Access Memory  
SVGA [S-V-G-A] – Super video Graphic Array  
 
TFT [T-F-T] – Thin Film Transistor  
TIGA [T-I-G-A] – Texas Instruments Graphics Architecture  
TTL [T-T-L] – Transistor-Transistor Logic  
 
UART [you-art] – Universal Asynchronous Receiver/Transmitter  
UDMA [ultra-D-M-A] – Ultra Direct Memory access  
                                         {a DMA version that is twice as fast as the original}  
ULSI [U-L-S-I] – Ultra Large Scale Integration  
UPS [U-P-S] – Uninterruptible Power Supply  
USB [U-S-B] – Universal Serial Bus  
 
VESA [vee-suh] – Video Electronics Standard Association  
VMS [V-M-S] – Virtual Memory System  
VRAM [vee-ram] – Video RAM  
 
WAN [wh-an] – Wide Area Network  
WORM [worm] – Write Once Read Memory  
WRAM [double-you-ram] – Windows RAM  
 
XGA [X-G-A] – Extended Graphics Array (Adapter)  
 
1G [one-G] – First Generation  
2G [two-G] – Second Generation  
3G [three-G] – Third Generation  
 
 
 


